Fungi Subvert Vaccine T Cell Priming at the Respiratory Mucosa by Preventing Chemokine-Induced Influx of Inflammatory Monocytes

Marcel Wüthrich,1,5,* Karen Ersland,4,6 Thomas Sullivan,1 Kevin Galles,1 and Bruce S. Klein1,2,3,*

1Department of Pediatrics
2Department of Internal Medicine
3Departments of Medical Microbiology and Immunology
4The Cell and Molecular Pathology Graduate Training Program
University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
5These authors contributed equally to this work
*Correspondence: mwuethr@wisc.edu (M.W.), bsklein@wisc.edu (B.S.K.)
DOI 10.1016/j.immuni.2012.02.015

SUMMARY

Vaccinologists strive to harness immunity at mucosal sites of pathogen entry. We studied respiratory delivery of an attenuated vaccine against Blastomyces dermatitidis. We created a T cell receptor transgenic mouse responsive to vaccine yeast and found that mucosal vaccination led to poor T cell activation in the draining nodes and differentiation in the lung. Mucosal vaccination subverted lung T cell priming by inducing matrix metalloproteinase 2 (MMP2), which impaired the action of the chemokine CCL7 on egress of CCR2+ Ly6C+ inflammatory monocytes from the bone marrow and their recruitment to the lung. Studies in Mmp2−/− mice, or treatment with MMP inhibitor or rCCL7, restored recruitment of Ly6C+ monocytes to the lung and CD4+ T cell priming. Mucosal vaccination against fungi and perhaps other respiratory pathogens may require manipulation of host MMPs in order to alter chemokine signals needed to recruit Ly6C+ monocytes and prime T cells at the respiratory mucosa.

INTRODUCTION

The rising rates of systemic fungal infections worldwide have stimulated interest in developing vaccines (Cutler et al., 2007). Although experimental vaccines are under study, none are commercially available (Cutler et al., 2007). An understanding of the mode of action of fungal vaccines will enhance their application in human populations. Th1-cell responses mediated by IL-12 and IFN-γ are believed to foster protective immunity to many pathogenic fungi (Wüthrich et al., 2012). During the earliest stages of fungal infection, pattern recognition receptors on myeloid lineage cells sense fungal pathogens and surfaces (Brown, 2011). Myeloid cells, particularly dendritic cells (DCs), bridge innate and adaptive immunity to pathogens. DCs have thus become a target for vaccine development strategies (Steinman, 2008).

The lung airways of all species are lined with an intraepithelial dendritic network of MHCIi CD11c+ cells that are mostly CD11b− (Lambrecht and Hammad, 2009). The lamina propria contains MHCIi CD11c+ cells that express CD11b and elaborate proinflammatory chemokines. CD11b+ and CD11b− subsets of DCs express high amounts of CD11c and are viewed as conventional DCs, in contrast to a population of CD11cint plasmacytoid DCs (pDCs). Lung alveoli contain CD11cint MHCIi DCs, which are enriched in CD103+ subsets. Alveolar macrophages also express CD11c (not CD11b), confusing the analysis of lung DCs unless autofluorescence is used for identifying macrophages (Vermaelen and Pauwels, 2004). Under inflammatory conditions, such as microbial challenge, CD11b+ monocyte-derived DCs that rapidly upregulate CD11c and retain Ly6C as a remnant of monocytic descent are recruited (Shi and Pamer, 2011).

Monocyte-derived DCs are important for priming T cell responses to microbes (Hohl et al., 2009; Serbina et al., 2008). These DCs prime Th1 cell responses and IFN-γ-producing Ag-specific CD4+ transgenic (tg) T cells in pulmonary aspergillosis (Hohl et al., 2009). In Aspergillus infection, CCR2+ Ly6C+ DCs are required to prime T cells in the lung, yet not in the spleen. We recently analyzed sequential stages during the induction of vaccine immunity to fungi after subcutaneous (s.c.) injection (Ersland et al., 2010). Monocyte-derived DCs initially take up the most vaccine yeast and traffic them to the skin-draining LNs. However, the direct priming of naive Ag-specific CD4 T cells in vivo is governed by LN-resident DCs and skin-derived DCs. In fact, other skin DCs compensate for monocyte-derived DCs in Ccr2−/− mice lacking the cells.

Vaccinologists strive to harness protective immunity at mucosal sites of initial pathogen entry. We sought to immunize against fungal respiratory pathogens by delivering vaccines into the respiratory tract. Although delivery of an attenuated strain of Blastomyces dermatitidis (Bd) into the skin protects 100% of mice against a lethal pulmonary challenge, and most develop sterilizing immunity (Wüthrich et al., 2000), vaccine delivery intranasally (i.n.) failed to protect and 100% of vaccinees succumbed to infection. Herein, we studied the mechanism behind the failure in priming antifungal vaccine immunity at the respiratory mucosa.
We report that fungi subvert the induction of vaccine immunity at the respiratory mucosa by inducing lung matrix metalloproteinase 2 (MMP2), which suppresses the action of CCL7 and impairs recruitment and maturation of Ly6C^{hi} inflammatory monocyte-derived DCs in the lung. Elimination of mature Ly6^{hi} DCs at this site retarded the activation, expansion, and differentiation of IFN-γ⁺ CD4⁺ T cells. Conversely, administering an MMP2 inhibitor or CCL7 during vaccine delivery restored recruitment of Ly6C^{hi} inflammatory monocytes to the lung and priming of CD4⁺ T cells. Our results pinpoint mechanisms that underpin vaccination against fungi at the respiratory mucosa. They also highlight host and microbial strategies that must be overcome to engineer immunity for resistance, we compared the priming of CD4⁺ T cells for each of them to uncover the reasons for failure versus success in priming of T cells at the respiratory mucosa. Th1 cell differentiation occurs fully after CD4⁺ T cells migrate to the lung (Rivera et al., 2006). Although i.t. vaccination with <i>Bd</i> induced activated CD4⁺ T cells (CD44⁺) cells in the lung, Th1 cells failed to accrue and <1% produced IFN-γ⁺ (Figure 1A). There were ~1,000-fold less IFN-γ⁺ CD4⁺ T cells in the lung after i.t. vaccination with <i>Bd</i> compared with <i>Hc</i>. <i>Hc</i> induced a 1,000-fold increase in the number of IFN-γ⁺ CD4⁺ T cells in the lung upon mucosal vaccination, with nearly 14% producing IFN-γ, whereas <i>Bd</i> induced little increase. In contrast, s.c. administration of <i>Bd</i>, as well as <i>Hc</i>, lead to marked expansion of IFN-γ⁺ cells during a recall response after challenge. Mice given <i>Bd</i> s.c. had 100-fold more IFN-γ⁺ cells than unvaccinated controls, and more than 7% of CD4⁺ T cells produced this cytokine (Figure S1A available online).

Several mechanisms could explain the small number of IFN-γ⁺ cells and the inability of attenuated <i>Bd</i> to vaccinate at the respiratory mucosa. First, the vaccine may not induce proliferation of <i>Bd</i> specific CD4⁺ T cells or promote their survival. Second it may not induce differentiation of Ag-specific T cells in the draining MLN. Third, Th1 CD4⁺ T cells may not be recruited from MLN into the lung airways. Last, CD4⁺ T cells may not fully

RESULTS

Fungal Vaccination at the Respiratory Mucosa

Subcutaneous injection of mice with a live attenuated <i>Bd</i> strain engenders 100% survival against a lethal pulmonary challenge (Wüthrich et al., 2000), but inconsistent sterilizing immunity. Because the natural route of infection is inhalation of spores, we sought to enhance the vaccine’s efficacy by delivering it into the respiratory tract. All mice vaccinated intranasal (i.n.) into the respiratory tract. All mice vaccinated intranasal (i.n.) we sought to enhance the vaccine’s efficacy by delivering it...
differentiate or mature into Th1 cells in the lung. To distinguish among these possibilities, and interrogate T cell priming, expansion, differentiation and trafficking, we generated a TCR tg mouse specific for Bd.

Generation and Characterization of a TCR tg Mouse

The Bd 1807 TCR tg mouse was engineered (Figures S1C–S1F; see Supplemental Experimental Procedures) from a CD4+ T cell clone that confers protective immunity against lethal pulmonary challenge in mice (Wü thrich et al., 2007). Bd 1807 mice have an increased prevalence of Vα2+ CD4+ T cells in the peripheral blood, spleen, and LNvs versus wild-type B6 mice (Figure S1E). Naive CD4+ T cells from Bd 1807 mice became activated and proliferated in response to cell wall-membrane antigen (CW/M), whereas CD4+ T cells from naive wild-type mice did not respond to CW/M (Figure S1F). Thus, Bd 1807 cells are specific and responsive to Bd in vitro.

Bd 1807 cells respond to Bd and cross-react with Hc after s.c. vaccination (Wü thrich et al., 2011b), they become activated in the draining LNs, differentiate into Th1 effector cells on migration to the vaccine site, and exhibit memory and recall to lung upon lethal pulmonary infection. Bd 1807 mice not only show fidelity with polyclonal CD4+ T cells, but they also report the behavior of CD4+ T cells that confer protective immunity (Wü thrich et al., 2007). Thus, Bd 1807 cells enable interrogation of CD4+ T cell priming, expansion and trafficking in response to both fungi, and comparisons of these events between them.

Disparate Vaccine Priming of Bd 1807 Cells by Bd versus Hc at the Respiratory Mucosa

We compared the priming of Bd 1807 tg CD4+ T cells in response to vaccination with Bd or Hc in the lung. Although Bd 1807 cells respond vigorously to both fungi after vaccination s.c. (above), when vaccine is instead given i.t., the activation, expansion, and differentiation into IFN-γ effector cells is sharply reduced in mice given Bd versus Hc (Figure 1B). The discrepancies between the two groups were most exaggerated for IFN-γ+ 1807 cells in the lung. Hc-vaccinated mice had >100-fold more 1807 Th1 effector cells compared to Bd. In lung-draining or mediastinal LNs (MLN), Bd-vaccinated mice also had 10- to 100-fold fewer activated cells. In contrast, after s.c. vaccination, Bd 1807 cells were activated (CD44+) in the sdLNs efficiently in response to both fungi, and similar numbers of antigen-specific IFNγ+ T1 effector cells were recalled to the lung (Figure S1B).

Thus, Bd 1807 cells let us pinpoint defects in priming CD4+ T cells after delivery of Bd vaccine in the lung, which are linked to (1) impaired activation and expansion in the lung-draining MLN and (2) profound failure to differentiate fully into Th1 IFN-γ-producing effector cells upon migration back to lung after mucosal vaccination. These deficits probably underpin failed vaccination by Bd at the respiratory mucosa. The results contrast sharply with the robust priming, expansion, and differentiation of Bd 1807 cells in response to Hc delivered via the respiratory route and to Bd vaccine delivered by the s.c. route. These differences raise the question: why does Bd vaccine fail to prime T cells at the respiratory mucosa and what mechanism accounts for the sharp disparity in vaccine priming in the lung by these two closely related fungi?

Recruitment of Ly6C+ Inflammatory Monocytes upon Mucosal Vaccination

We analyzed the myeloid APCs recruited to the lung after delivery of vaccine yeast into the respiratory tract. We looked at CD103+ DCs, CD11b+ DCs, including inflammatory monocyte-derived Ly6C+ DCs, alveolar macrophages, and neutrophils. We saw sharp differences in the influx of APCs and uptake of yeast for the two fungi. CD11b+ DCs were among the most prominent APCs recruited to the lungs by both fungi (Figures 2A and S2C–S2F). The sharpest difference between the two fungi was in the influx of Ly6C+CD11b+ cells. Ly6C+ monocytes accounted for ∼10% of the lung cells in response to Hc versus <1% for Bd (Figure 2B). By staining yeast with PKH26, we honed in on lung APC that harbored yeast (Figures 2C, 2D, and S2D–S2F). CD103+ DCs contained few yeast (Figure 3C). In contrast, for both fungi, most yeast resided with CD11b+ DCs (Figures 2C and S2D) and also in macrophages and neutrophils (Figures S2E and S2F). Strikingly, there were >10-fold more Ly6C+CD11b+ cells in the lung harboring Hc versus Bd (Figures 2C and 2D).

The same disparity between these fungi was seen in the draining MLN (Figures 2E–2H). Ly6C+CD11b+ cells were nearly absent in the MLN of Bd-vaccinated mice (0.045%), whereas the proportion of these cells in the MLN of Hc-vaccinated mice was 30-fold higher (1.4%) (Figures 2E and 2F). Most of the DCs that harbored yeast in MLN were CD11b+ DCs, although some CD103+ cells also harbored yeast for both fungi (Figure 2G). Still, the biggest difference between the two fungi was again in Ly6C+CD11b+ cells: the proportion of these cells harboring Hc (7.2%) was >12-fold higher than that for Bd (0.59%) (Figure 2G). Consequently, in the MLN, there were >1000-fold more Ly6C+ inflammatory monocytes with Hc (≥104 cells) than Bd (≤10 cells) (Figure 2H). Thus, the numbers of Ly6C+ monocytes that are recruited to the lung and migrate into the draining MLN, and the numbers of these DCs harboring yeast, are sharply reduced in mice that received Bd compared to Hc.

Bd Blocks the Recruitment of Ly6C+ Inflammatory Monocytes to the Lung

The blunted entry of Ly6C+ monocytes into the lungs of Bd-vaccinated mice could be due to either a failure to induce the recruitment of these cells or, alternatively, an active process of blocking their recruitment. To distinguish between the two possibilities, we performed a mixing experiment in which we added Bd vaccine yeast to the inoculum of Hc given i.t. The addition of Bd curtailed the recruitment of Ly6C+ monocytes into the lung by Hc (Figure 3A). In the mixed infection, the distribution and numbers of DCs showed a paucity of Ly6C+CD11b+ DCs (0.26%) that was similar to mice vaccinated with Bd (0.19%) and much lower than mice that received Hc (13.7%) (Figure 3A); the numbers of total Ly6C+ DCs in the lung followed similar trends with almost identical patterns for Bd and mixed infections, each much lower than for Hc vaccination (Figure 3B). To see whether mixed infection perturbed the numbers of APC harboring yeast, we stained the yeast with PKH26. The total number of yeast-loaded APCs in the lung was increased in the mixed infection (Figure S3B), although the numbers of Ly6C+(and Ly6C+CD11c−) cells that harbored yeast was greatly reduced in the mixed-infection and...
Figure 2. Inflammatory Monocytes Are Recruited to the Lung in Response to Hc but Not Bd
(A) Mice received 10^5 attenuated Bd yeast or 10^6 Hc yeast i.t. Lungs were harvested 4 days after infection, digested with collagenase D, and stained for flow cytometry. Cells were initially gated on FCS/SSC and then underwent live cell gating, based on fixable live/dead staining. Left column shows the phenotype of lung DCs (MHCII+ CD11c+ cells) that stain positive for CD103 and CD11b. Right column shows the inflammatory monocytes in the lung characterized by Ly6C and CD11b expression, indicated in the circled gate.

(B) Percentage of lung cells that are inflammatory monocytes after exposure to the fungi. Gate for percentages are shown in Figure 2A. *p < 0.05 versus respective sample for Bd group. Error bars represent the mean ± SD of four mice per group. Data are representative of five independent experiments.

(C) The phenotype of lung cells containing PKH26+ yeast were identified as in (A).

(D) Number of total (black bars) and yeast-loaded (PKH26+) inflammatory monocyte (red bars) in the lung. Gate for percentages are shown in Figure 2C. Numbers were calculated based upon FACS percentages and cell counts. *p < .05 versus respective sample in Bd group. Error bars represent the mean ± SD of four mice per group. Data are representative of five independent experiments.

(E–H) Characterization of cells in the draining MLNs of mice that received fungi as above; MLNs are harvested at the same time as the lungs. Data from the MLNs is depicted as in (A)–(D), respectively. *p < .05 versus the respective sample for the Bd group.
Figure 3. *Bd* Retards the Influx and Maturation of Inflammatory Monocytes in the Lung

(A) Inflammatory monocyte phenotype in the lungs of mice that received 10^6 *Bd*, 10^6 *Hc*, or a mixture of yeast i.t. Gates in the top row depict the percentage of inflammatory monocytes among total lung cells; gates in the bottom row show the percentage of inflammatory monocytes among lung cells containing PKH26+ yeast. (B) Numbers of total Ly6C+ monocytes (black bars) and total Ly6C+CD11c+ cells (gray bars) 4 days after mice received yeast i.t. *p < 0.05 for *Hc* group versus *Bd* alone- or mixed-fungal group. The numbers of yeast-loaded (PKH26+) Ly6C+ monocytes (red bars) and PKH26+ Ly6C+CD11c+ cells (pink bars) 4 days after mice received yeast i.t. *p < 0.05 for *Hc* group versus *Bd* alone- or mixed-fungal group.

(C) Phenotype of inflammatory monocytes in MLN (top row) and of cells containing PKH26+ yeast (bottom row). (D) Numbers of total Ly6C+ monocytes (black bars) and total Ly6C+CD11c+ cells (gray bars) in the draining MLNs 4 days after mice received fungi i.t. *p < 0.05 for *Hc* group versus *Bd* alone- or mixed-fungal group. Number of yeast-loaded (PKH26+) Ly6C+ monocytes (red bars) and PKH26+ Ly6C+CD11c+ cells (pink bars) in the MLN 4 days after mice received fungi i.t. *p < 0.05 for *Hc* group versus *Bd* alone- or mixed-fungal group. *p < 0.05 for *Hc* group versus *Bd* group.

(E) CD11c expression of PKH26+ Ly6C+ (middle row) and PKH26+ Ly6C+ (right row) cells in the lung of mice that received i.t. inoculation of *Bd*, *Hc*, or the two yeast mixed. Arrow denotes the CD11c expression of the population indicated. Histogram of CD11c expression on PKH26+ Ly6C+ cells (the gate was drawn to include both Ly6C+ and Ly6C− cells) from mice that received i.t. inoculation of *Bd* (white), *Hc* (black), or the two yeast mixed (gray).

(F) CCR2 expression on Ly6C+ and Ly6C− cells in the draining MLNs of mice 4 days after they received i.t. inoculation *Hc* (top row). The bottom row shows CCR2 expression on Ly6C+CD11c+ cells in mice that received i.t. inoculation of *Hc*. (G) Absolute number of Ly6C+CD11c+CCR2+ cells in the draining MLNs of mice that received i.t. inocula of *Bd*, *Hc*, or both yeast mixed together. Numbers are derived from percentages based on flow analysis. *p < 0.05 for comparisons indicated in brackets. Error bars in (B), (D), and (G) represent the mean ± SD of four to five mice per group and the data are representative of three independent experiments.
Immunity
Subversion of Antifungal Immunity

Mucosal Vaccination with Bd Retards Chemokine Action, Blocking Egress of Ly6C^{hi} Inflammatory Monocytes from the Bone Marrow and Recruitment into the Lung

We investigated mechanisms behind the impaired influx of Ly6C^{hi} inflammatory monocytes upon respiratory vaccination with Bd. CCR2^{−/−} inflammatory monocytes emigrate from the bone marrow in response to chemokine signals, so we first analyzed whether the defect in cell recruitment is due to failed egress of cells from the bone marrow or failed entry into the lung. In wild-type mice, the percentage of Ly6C^{hi} monocytes in the marrow was 2-fold higher in animals that got Bd or mixed infection, compared to Hc (Figure 4A). This increase could be due to trapping of cells in the marrow or increased production. To distinguish these possibilities, we studied Ccr2^{−/−} mice in which these cells cannot exit the marrow (Serbina and Pamer, 2006). Production is increased in the Hc group relative to the other groups (Figure S4A), suggesting that overproduction does not explain the accumulation for Bd relative to Hc in wild-type mice. We did not see a difference between groups in the number of circulating monocytes during 2–5 days after vaccination (data not shown). Thus, mucosal delivery of Bd leads to failure of egress and trapping of Ly6C^{hi} monocytes in the marrow rather than defective monocyte extravasation into the lung.

The major signals that induce egress of CCR2⁺ monocytes from the bone marrow are CCL2 and CCL7 (Jia et al., 2008; Tsou et al., 2007). To see whether Bd affected these chemokines, we analyzed levels in the lungs and serum of mice from the three groups. The most striking difference was elevated serum levels of CCL7 in those that received Bd i.t. (Figure 4B). We tested the activity of these sera in promoting migration of Ly6C^{hi} monocytes in vitro. Sera from mice that got Hc promoted the migration of Ly6C^{hi} monocytes, whereas sera from the Bd group did not (Figure 4C). Thus, the elevated levels of CCL7 in Bd sera failed to induce chemotaxis.

Chemokines can be inactivated by serine proteases of mammalian or microbial origin. To test whether inactive CCL7 might explain the defects in bone marrow egress of Bd-vaccinated mice, we vaccinated the mice together with recombinant CCL7. Recombinant CCL7 given to Bd-vaccinated mice enhanced the egress of Ly6C^{hi} monocytes out of the marrow and induced their recruitment into the lungs (Figure 4D). Thus, the elevated endogenous levels of CCL7 in serum were not functional in vivo.

Inactive chemokines can desensitize their receptor (Ali et al., 2005). We studied the migration of bone marrow monocytes in vitro in response to both CCL7 and CCL2. Ly6C^{hi} monocytes from naive mice showed a 3-fold increase in migration toward these chemokines compared to medium alone, whereas cells from Bd-vaccinated mice showed significantly less migration toward the ligands (Figure S4B). We further analyzed receptor desensitization by measuring Ca²⁺ flux. The flux of bone marrow Ly6C^{hi} monocytes in response to CCL7 as well as CCL2 is curtailed in cells from Bd-vaccinated mice compared to naive mice (Figure 4E; data not shown). Thus, Ly6C^{hi} monocytes from Bd-vaccinated mice showed reduced sensitivity to their ligands, promoting their trapping in the marrow and poor recruitment to the lung.

Mammalian Lung MMP2 Is Induced by Fungal Vaccination at the Respiratory Mucosa

Chemokines can be inactivated by mammalian MMPs. The gelatinase MMP2 acts on CCL7 converting it into an inactive or antagonistic form (McQuibban et al., 2000; McQuibban et al., 2002). We investigated lung MMP2 in response to vaccination at the respiratory mucosa. The level of active MMP2 in bronchoalveolar lavage (BAL) fluid was several-fold higher in mice vaccinated with Bd versus Hc (Figure 5A). To see whether the MMP2 levels affected chemokine-mediated egress of Ly6C^{hi} monocytes from the marrow to the lung, we inhibited MMPs during vaccine administration. The broad MMP inhibitor, GM6001, and the MMP2-selective inhibitor promoted egress of Ly6C^{hi} monocytes from the bone marrow (Figure S5A) and increased their recruitment to the lung in mice vaccinated i.t. with Bd (Figure 5B). These inhibitors did not affect the growth of the fungus in the lung (data not shown). Vaccination of Mmp2^{−/−} mice also augmented the release of Ly6C^{hi} monocytes from the marrow (Figure S5B) and influx of these cells into the lung compared to vaccinated wild-type mice (Figure 5C). Thus, induction of lung MMP2 and inactive CCL7 underpin the trapping of Ly6C^{hi} monocytes in the bone marrow and their failure to traffic to the lung in response to fungal vaccine administration at the respiratory mucosa.

Ly6C^{hi} CD11b⁺ CCR2⁺ Cells and Vaccine Priming of Bd 1807 Cells at the Respiratory Mucosa

We examined how impaired influx of Ly6C^{hi} CD11b⁺ CD11c⁺ CCR2⁺ cells upon vaccination affects priming of protective CD4⁺ T cells in the lung, including Bd 1807 cells. We used Ccr2^{−/−} mice to establish the contribution of Ly6C^{hi} monocytes (Figure 6A). Expansion of Bd 1807 cells in the MLN was markedly impaired in wild-type mice that received Bd or mixed infection.
Subversion of Antifungal Immunity

Transfer of Ly6C^{hi} CD11b⁺ CD11c⁻ DCs Enables <i>Bd</i> to Prime T Cells in the Lung

We tested whether resupply of Ly6C^{hi} CD11b⁺ CD11c⁻ DCs into the lungs restored priming of <i>Bd</i> 1807 cells. We first established conditions that lead to optimal recruitment after i.t. delivery of <i>Hc</i>. These cells peaked by day 4 in the lung and day 7 in the MLNs (Figures 6A and 6B). We collected Ly6C^{hi} monocytes from mice 7 days after exposure to <i>Hc</i>. We enriched the cells by negative selection (Figure S6C), after which Ly6C^{hi} CD11b⁺ CD11c⁻ DCs from naive mice or <i>Bd</i>-vaccinated mice harvested 4 days later were loaded with Indo-1 and stimulated with CCL2. Free [Ca²⁺]ⁱ was measured in monocytes by flow cytometry and gating on CD11b⁺ and Ly6C^{hi} cells (panels on left). Ionomycin was used as a positive control for maximal Ca²⁺ influx. Data are representative of four mice per group and three experiments. Results are expressed as percentage of the normalized response (right panel) and calculated as follows: ([mean of Indo-1 UV-B/UV-A ratio before chemokine (pink shading)]/mean of Indo-1 UV-B/UV-A ratio during the response to ionomycin (blue shading)) – [mean of Indo-1 UV-B/UV-A ratio, before chemokine addition (pink shading)]. Mean and SEM values were calculated for each group and illustrated by histogram. Data are representative of three experiments.

i.t., compared to <i>Hc</i> (Figure 6B). In the Ccr2^{-/-} mice, 1807 cells again failed to expand in response to <i>Bd</i>. Slightly higher numbers of 1807 cells expanded in response to <i>Hc</i> in Ccr2^{-/-} versus wild-type mice, but the difference was insignificant. However, the differentiation of IFNγ producing Th 1807 cells in response to <i>Hc</i> was sharply impaired in Ccr2^{-/-} mice in the MLN (Figures 6C and 6D), and especially after these T cells exited the nodes and migrated back into the lung (Figures 6F and 6G). In addition to impairing the differentiation of 1807 into Th1 cells, the loss of CCR2 changed the ratio of cytokine producing 1807 cells in favor of T13 and T17 cells in response to <i>Hc</i> (Figure 6G). Thus, the loss of CCR2^{-/-} Ly6C^{hi} CD11b⁺ DCs, due to <i>Bd</i> or CCR2 deletion, curtails activation, proliferation and Th1 differentiation of 1807 cells in the MLN and lung.
Figure 5. MMP2 Retards Recruitment of Ly6chigh Inflammatory Monocytes to the Lungs of Mice Vaccinated at the Respiratory Mucosa with Attenuated Bd

(A) Lung MMP2 levels. Mice were inoculated i.t. with 10^5 Bd or 10^6 Hc and lung MMP2 levels were assessed by zymography. The zymogram (upper panel) shows pro- and active MMP2 in BAL samples pooled for 5 mice/group 3 days after vaccination. The histogram shows densitometry quantification of active MMP2. Results are the mean ± SE of pixel intensity for mice (n = 5) in each group. *p < 0.05 versus Hc. Results are representative of 3 independent experiments.

(B) Inhibition of MMP2 promotes egress of Ly6C^hi monocytes from the marrow and recruitment to the lung. Mice were inoculated i.t. with Hc or Bd as above either with or without DMSO, GM6001 or MMP-2 inhibitor. On day 3, the percentage of Ly6C^hi monocytes in the lung (lower panels) and the number (upper panel) was determined by flow cytometry. Data are the mean ± SD of 7-10 mice/group from two independent experiments. *p < 0.05 for Bd groups that received DMSO alone versus GM6001 or MMP-2 inhibitors.

(C) Mmp2^-/- mice show increased recruitment of Ly6C^hi monocytes into the lungs. Mmp2^-/- and wild-type mice were vaccinated with Bd (i.t.) or not as above and four days later the percentage of Ly6C^hi monocytes in the lung (left panels) and the number (right panel) was determined by FACS. Data is representative of 4-5 mice/group and three independent experiments. *p < 0.05 versus all other groups.
Figure 6. The Absence of Inflammatory Monocytes Curtails Activation CD4 T Cells in the Lung-Draining LNs and Their Th1 Cell Differentiation There and in the Lung

(A) Recruitment of Ly6C^{hi} monocytes (circled) into draining MLN of wild-type mice or Cor2^{−/−} mice 4 days after i.t. vaccination.
(B) Expansion of Bd 1807 tg cells in the MLNs of wild-type or Cor2^{−/−} mice that received Bd (10⁷), H. capsulatum (10⁷) or both. One day before infection, 10⁶ 1807 Thy1.1⁺ cells were transferred into Thy1.2[−] mice. MLN were harvested 9 days post-infection. Numbers were calculated based upon FACS percentage of Thy1.1⁺ cells in MLN. Error bars are the mean ± SD of 4-5 mice/group. *p < 0.05 for comparisons indicated by brackets. Data is representative of 2 independent experiments. WT, wild-type.

(C and D) Number of IFN-γ (black bar), IL-13 (gray bar), IL-17 (white bar) producing 1807 cells in the MLNs of WT and Cor2^{−/−} mice. Cells from MLN were cocultured overnight with irradiated splenocytes and Bd CW/M antigen, then stimulated for 4 hr with Golgistop at 37 °C and stained for intracellular cytokines. Absolute numbers were calculated based upon FACS percentages shown in (D). Error bars indicate mean SD of four to five mice per group. *p < 0.05 for comparisons indicated by brackets. Data are representative of two independent experiments.

(E) Total number of 1807 T cells recruited back to the lung 9 days after i.t. inoculation of yeast. 1807 tg cells in the lung were analyzed as described in (B). Error bars are the mean ± SD of four to five mice per group. *p < 0.05 for comparisons indicated by brackets. Data are representative of two independent experiments.

(F and G) Cytokine producing 1807 T cells recruited to the lung. For intracellular cytokine staining, single-cell suspension from the lung is incubated with Golgistop, anti-CD3, and anti-CD28 for 4 hr at 37 °C on the day of harvest and then stained for IFN-γ (black bar), IL-13 (gray bar), and IL-17 (white bar). Layout and data analysis are as described in (C) and (D).
Subversion of Antifungal Immunity

We verified that congeneric transferred DCs persisted in the lungs over several days (Figure S6D). We analyzed the priming and differentiation of separately transferred Bd 1807 cells (and endogenous CD4+ T cells) in lungs 9 days after DC transfer.

In Ccr2^{−/−} mice, transfer of Ly6C^{hi} monocytes enhanced the number of IFN-γ-1807 cells after mucosal vaccination (Figures 7A–7C): they rose 100-fold in mice that received Bd (note Bd only versus Bd + DCs in Figure 7B) and 10-fold in mice that received Hc (note Hc only versus Hc + DCs). Similar trends were observed among the polyclonal CD4⁺ T cells. Thus, the Ly6C^{hi} monocytes transferred into Ccr2^{−/−} recipients were functional and re-established activation, differentiation, and recruitment into the lungs of Th1 cells.

Upon transfer into wild-type mice (Figures 7D–7F), Ly6C^{hi} monocytes exerted a similar augmentation of 1807 cell function in the lungs. Transfer of Ly6C^{hi} monocytes into unvaccinated mice enhanced the number of IFN-γ-1807 cells, when compared to naive mice. Transfer of these cells into mice that had been vaccinated i.t. with Bd had a more pronounced effect, increasing the number of IFN-γ-producing 1807 cells in the lung by nearly 100-fold (Figure 7E; note Bd only versus Bd + DCs), and the percentage of these cells by nearly 10-fold (Figure 7D; note Bd only versus Bd + DCs). Comparable trends were observed in the endogenous CD4⁺ T cell pool (Figures 7D and 7F). Thus, impaired recruitment and maturation of Ly6C^{hi} monocytes led to failed priming of CD4⁺ T cells and skewing of their differentiation away from Th1 cells upon mucosal vaccination with Bd. These events were remediated by the adoptive transfer of Ly6C^{hi} monocytes.

DISCUSSION

CD4⁺ T cells that produce IFN-γ are pivotal in immunity to fungi (Cutler et al., 2007). Here, we found that respiratory mucosal vaccination with Bd did not prime IFN-γ-producing endogenous...
CD4⁺ T cells. We used a TCR tg mouse to track Ag-specific T cells to decipher the mechanism. The host response to attenuated fungus, involving exuberant MMP and restrained inflammation, paradoxically undermined downstream priming of T cells. This finding offers a cautionary note to vaccinologists harnessing vaccine immunity at the respiratory mucosa.

Subcutaneous delivery of attenuated Bd recruits Ly6C⁹⁰ DCs to the injection site, which ferry yeast into the sdLNs (Erland et al., 2010). Respiratory mucosal delivery of the vaccine yeast instead failed to recruit the cells. There were low numbers of these cells in the lung and MLN and few harbored yeast. Bd blocked recruitment and maturation of Ly6C⁹⁰ DCs in the lung, rather than simply failing to induce their influx and maturation. The impact of Bd on Ly6C⁹⁰ monocytes was selective. Uptake of these yeast into APCs and their trafficking into MLNs was not generally impaired, given that the number of APCs harboring Bd in lung and MLN was comparable to that in mice exposed to Hc alone or in a mixed infection. Thus, Bd led to a redistribution of yeast from Ly6C⁹⁰ monocytes, into other lung APCs.

Ly6C⁹⁰ monocytes regulate the early host response to Aspergillus lung infection by taking up conidia and trafficking them into the draining MLN to prime CD4⁺ T cells (Hohl et al., 2009). Ly6C⁹⁰ monocytes are dispensable in priming CD4⁺ T cells in the spleen of mice that are systemically infected i.v. with Aspergillus. Although Ly6C⁹⁰ monocytes carry Bd yeast into the sdLNs after s.c. vaccination (Erland et al., 2010), in Ccr2⁻/⁻ mice lacking Ly6C⁹⁰ DCs, other migratory skin and resident DCs compensate by delivering yeast into the draining nodes to prime T cells. In contrast, during mucosal vaccine delivery here, the modulation of Ly6C⁹⁰ monocyte influx—either due to Bd alone or in mixed infection, or in Ccr2⁻/⁻ mice—sharply reduced the numbers of vaccine yeast delivered to the MLN and impaired priming of T cells. Thus, Ly6C⁹⁰ monocytes are indispensable in fungal vaccine delivery and antigen priming in the lung. Cryptococcus neofor mans also induces the recruitment into lung of Ly6C⁹⁰ monocytes (Osterholzer et al., 2009), which mature into CD11b⁺ CD11c⁺ DCs, downregulate Ly6C, and promote resistance. In primary pulmonary histoplasmosis, Ccr2⁻/⁻ mice have altered leukocyte influx in their lungs and succumb to infection due to overproduction of IL-4 and alternative activation of pulmonary macrophages (Szymczak and Deepe, 2009).

Several chemokines can bind CCR2. CCL2 and CCL7 are the main CCR2 ligands in inflammatory settings (Jia et al., 2008; Tsou et al., 2007) and help mobilize monocytes from the bone marrow. Vaccination with Bd led to trapping of these cells in the marrow and was also associated with high levels of CCL7 in serum. The serum CCL7 in these mice was inactive, failing to promote CCR2-dependent migration of Ly6C⁹⁰ monocytes in chemotactic assays. Further, treatment of these vaccinated mice with rCCL7 repaired the deficit, promoting egress of CCR2⁺ cells from the marrow and entry into the lung. We propose that CCL7 was rendered inactive by MMP2 because this product was elevated in Bd-vaccinated mice and its inhibition relieved marrow trapping and promoted Ly6C⁹⁰ cell recruitment to the lung. Removal of N-terminus residues of CCL7 by MMP2 impairs its activity, yet CCL7 can still bind its receptor and compete with CCL2 (McQuibban et al., 2000; McQuibban et al., 2002). Host MMP2 may have modified CCL7 impairing its action, perhaps also antagonizing CCL2. Inflammatory monocytes from the marrow of Bd-vaccinated mice showed reduced sensitivity and response to CCL2. Although these defects could be partially corrected with exogenous rCCL7, we did not measure serum CCL7 levels after treatment and cannot exclude a pharmacological effect.

In hepatitis C, serum CXCL10, which recruits lymphocytes to the liver by binding surface CXCR3, is paradoxically elevated in the patients who fail therapy (Causouge et al., 2011). Elevated levels of the protease dipeptidyl peptidase IV (DPP4) cleaves CXCL10, converting it from an agonist into an antagonist of CXCR3. Although MMP2 probably acts similarly herein, we cannot exclude a role for other MMPs including being of fungal origin.

Impaired recruitment and maturation of Ly6C⁹⁰ monocytes by Bd blunted the activation, expansion, and differentiation of IFN-γ-producing T cells in the draining MLN and profoundly altered differentiation of T cells on migration to the lungs. Bd 1807 cells showed deficits in these functions after respiratory mucosal vaccination with Bd (but not after s.c. vaccination). Because Bd 1807 cells recognize a shared antigen in Bd and Hc, we could show that priming and Th1 differentiation of these T cells by Hc is impaired not only in Ccr2⁻/⁻ mice, but also in wild-type mice upon mucosal delivery of mixed Bd and Hc. Thus, yeast modulation of Ly6C⁹⁰ monocytes mediates failed T cell priming after mucosal vaccination with Bd. We substantiated the role of Ly6C⁹⁰ monocytes by adoptive transfer, which restored priming, expansion, and Th1 cell differentiation of Bd 1807 cells. Consistent with our findings, prior reports showed that inflammatory monocyte-derived DCs stimulate Th1 immune responses. In Ccr2⁻/⁻ mice, Th1 CD4⁺ T cell responses are impaired due to reduced monocyte recruitment to inflamed LNs and diminished production of IL-12 at the time of CD4⁺ T cell priming (Nakano et al., 2009; Peters et al., 2000; Peters et al., 2001). Similarly, in pulmonary cryptococcosis, Ccr2⁻/⁻ mice redirect CD4⁺ T cell differentiation from Th1 to Th2 cells (Bleas e et al., 2000; Traynor et al., 2000).

Impaired recruitment and maturation of Ly6C⁹⁰ monocytes skewed the differentiation of Bd 1807 cells toward IL-13- and IL-17-producing cells. This was especially evident in the 1807 cells that had fully differentiated after migrating back to the lung in Ccr2⁻/⁻ mice that received Hc. This was also true for 1807 cells in mice that received mixed infection. Our findings suggest that other APCs in the lung of wild-type mice that received Bd or mixed infection or in the Ccr2⁻/⁻ mice that received Hc, promote the differentiation of CD4⁺ T cells into IL-13- and IL-17-producing cells. Szymczak and Deepe (2009) found that lung IFN-γ levels were unaltered in Hc infected Ccr2⁻/⁻ mice, but elevated IL-4 levels instead led to their death. IL-17 levels were not reported in that study, but it was not possible to track Ag-specific T cells to assess skewed differentiation in the LNs or lung.

Priming Ag-specific immunity at mucosal sites of pathogen entry is an active area in vaccine development. Our study highlights pitfalls in applying this strategy broadly across pathogen kingdoms. There are four commercially available mucosal vaccines: polio, rotavirus, Salmonella typhi, and influenza—each a live, attenuated vaccine. HIV vaccine development is focused on strategies for a mucosal vaccine. Intranasal vaccine delivery of respiratory viruses is thought to prime immunity in nasal mucosa-associated lymphoreticular tissue, and engage
not only s-IGA, but also T cell immunity, particularly CTLs. Persistent antigen in the lung after influenza A infection fosters antigen uptake by specialized respiratory DC that prime memory T cells (Kim et al., 2010). Although CCR2\(^+\) cells govern resistance to \(M.\) \(tuberculosis\) (Peters et al., 2001), enhanced recruitment of inflammatory monocytes to the lungs of mice infected with \(M.\) \(tuberculosis\) with intranasal poly-IC unexpectedly enhanced pathogen growth in this permissive population and lung tissue injury despite unaltered production of IFN-\(\gamma\) (Antonelli et al., 2010).

These studies illustrate differences among pathogen kingdoms in vaccine or therapeutic strategies targeted to respiratory sites of pathogen entry. Our work sheds new light on this variability by highlighting the role of chemokines and their cellular targets in inducing mucosal immunity and by unveiling the paradoxic effect of the host in undermining immunity to a mucosal vaccine. To optimize the efficacy of mucosal vaccination, suitable vaccine adjuvants may thus need to target host MMP responses that counter adaptive immunity at the lung mucosa.

Targeted recruitment of leukocytes to the lung on vaccination may augment vaccine strategies.

EXPERIMENTAL PROCEDURES

Fungi

*\(Bd\) strain 55, *Hc* strain G217B and *C. albicans* strain SC5314 were previously described (Brandhorst et al., 1999). For a detailed description, see Supplemental Experimental Procedures.

Mice

The generation and characterization of *Bd* 1807 mice is described in detail in the accompanying Supplemental Experimental Procedures.

Desensitization Studies

For measuring monocyte migration in response to serum or chemokine, bone marrow cells were enriched for Ly6ChiCD11b\(^+\) cells, placed in the upper chamber of transwell plates, and allowed to migrate through the trans-membrane. For Ca\(^{2+}\)-flux measurement, monocytes were loaded with Indo-1 and stimulated with chemokine, and the flux was recorded over time by flow cytometry. For a detailed description, see Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and Supplemental Experimental Procedures (including adoptive transfer of *Bd* 1807 cells, vaccination and experimental infection, PKH26 staining of yeast, lung and mediastinal LN preparation, flow cytometry, adoptive transfer of inflammatory monocytes, generation of bone marrow dendritic cells, zymography, chemokine analysis and administration of recombinant CCL7 into mice, chemokinesis assay, calcium flux measurements, in vivo treatment with MMP2 inhibitors, and statistics) and can be found with this article online at doi:10.1016/j.immuni.2012.02.015.

ACKNOWLEDGMENTS

This work was supported by grants from the USPHS to B.K. and M.W. We thank A. Starr and C. Overall from the University of British Columbia, Canada, for providing advice on the MMP2 assays and R. Gordon from the department of Pediatrics at the University of Wisconsin for assistance with illustrations.

Received: September 30, 2010
Revised: December 30, 2011
Accepted: February 2, 2012
Published online: April 5, 2012

REFERENCES

Peters, W., Scott, H.M., Chambers, H.F., Flynn, J.L., Charo, I.F., and Ernst, J.D. (2001). Chemokine receptor 2 serves an early and essential role in...
