A STANDARD therapy for women with advanced epithelial ovarian cancer in the United States is an alkylating agent plus cisplatin. Cisplatin-based combination therapy has been found to be more effective than alkylating agents alone or combinations without cisplatin, when measured by clinical response rates and progression-free intervals. However, the evidence of benefit in overall survival is less compelling. When alkylating agents or combinations not containing platinum were used in advanced ovarian cancer, the anticipated average response rate was 40 to 50 percent (10 to 20 percent complete pathological response), with a median survival of 12 to 15 months. In women treated with cisplatin combinations as primary therapy, the response rates are 60 to 80 percent, with complete responses being most common in women who have had adequate surgical therapy.

The only large prospective, randomized study comparing cisplatin with a cisplatin-containing combination in advanced ovarian cancer suggested that cisplatin by itself is as effective as platinum-based combinations and is less toxic and less likely to lead to secondary tumors. Nevertheless, an overview of randomized therapeutic trials suggested that platinum-containing combinations are better than cisplatin alone. In patients with advanced ovarian cancer, a combination of cisplatin and cyclophosphamide is now standard treatment. Unfortunately, long-term disease control with this regimen occurs in less than 10 percent of women with incompletely resected stage III disease and less than 5 percent of women with stage IV disease.

After cisplatin emerged as an active drug in epithelial ovarian cancer, over a decade passed before another...
drug was developed that could elicit responses in women with platinum-refractory disease. In 1989, paclitaxel was reported to produce a response rate of 24 percent in women with platinum-resistant ovarian cancer (30 percent overall response rate). The activity of the drug was confirmed in a less heavily pretreated group of women who received a higher starting dose. The response rate in these women was 37 percent, which made paclitaxel the most active single drug ever evaluated by the Gynecologic Oncology Group in a phase 2 study of ovarian cancer. Subsequently, a phase 1 trial of the paclitaxel and cisplatin combination demonstrated that the two drugs could be safely combined, with the paclitaxel administered first as a 24-hour infusion, followed immediately thereafter by cisplatin. The use of paclitaxel in epithelial ovarian cancer has recently been reviewed.

The reproducible activity of paclitaxel as salvage therapy, the ability to combine it easily and safely with cisplatin, and the poor long-term results of standard therapy led the Gynecologic Oncology Group to initiate a prospective, randomized phase 3 trial to compare cisplatin plus paclitaxel with standard therapy in women with incompletely resected stage III or any stage IV ovarian cancer.

Methods

Women with pathologically verified stage III epithelial ovarian cancer (borderline tumors excluded) who had undergone a surgical procedure and were left with residual disease (>1 cm residual mass) or stage IV disease were eligible for study. They could have clinically measurable or unmeasurable (but able to be evaluated) disease. Other eligibility criteria included having undergone no previous chemotherapy; having given informed consent; having a Gynecologic Oncology Group performance-status score of 0, 1, or 2; and having a white-cell count of at least 3000 per cubic millimeter, a platelet count of at least 100,000 per cubic millimeter, a serum creatinine level of 2.0 mg per deciliter (177 μmol per liter) or less, and serum bilirubin and serum aspartate aminotransferase values of no more than twice the upper level of normal for the institution. Patients had to enter the study within six weeks after the surgical procedure, and could have had no previous chemotherapy or radiation for the ovarian cancer nor any previous cancer other than nonmelanoma skin cancer. Women with a history of cardiac arrhythmia or who were currently taking an antiarrhythmic medication were excluded. Pathological material was centrally reviewed to verify that it conformed with acceptable diagnoses. Similarly, each case was reviewed for adequacy of the initial surgical procedure, and one of us reviewed all the operative and pathology reports to assess the volume of tumors before and after surgery as well as to record the findings at second-look surgery.

On entry into the study, the women underwent a review of their history, physical examination, and laboratory procedures. Appropriate imaging procedures to measure the extent of disease were performed before and after every other course of therapy.

The women in the standard-therapy group received cyclophosphamide (750 mg per square meter of body-surface area intravenously) and cisplatin (75 mg per square meter intravenously at the rate of 1 mg per minute) every three weeks for a total of six courses. The women in the experimental-therapy group received paclitaxel (135 mg per square meter intravenously as a 24-hour continuous infusion) and cisplatin (75 mg per square meter intravenously at a rate of 1 mg per minute) every three weeks for a total of six courses. The women assigned to the experimental group were premedicated with dexamethasone (20 mg orally or intravenously 14 and 7 hours before the start of the paclitaxel infusion). Both diphenhydramine (50 mg) and any histamine H₂ antagonist were administered intravenously 30 minutes before the paclitaxel infusion.

Treatments were randomly assigned by the Statistical Office of the Gynecologic Oncology Group, with equal probability after stratification according to institution and the clinical measurability of disease. Women with clinically measurable disease formed the basis of the determination of the clinical response. Those without measurable disease and those with measurable disease and complete clinical responses at the end of their assigned treatment were required to have a reassessment laparotomy to determine the pathological response.

All adverse effects were graded according to the toxicity criteria of the Gynecologic Oncology Group. The women had to have a white-cell count of at least 3000 per cubic millimeter and a platelet count of at least 100,000 per cubic millimeter before the next course could be administered. Courses were delayed week by week until these counts were achieved. If this delay exceeded three weeks, the woman was withdrawn from the study. No delay in the subsequent courses was allowed for any gastrointestinal toxicity, peripheral neurotoxicity of grade 1 or 2, mild renal toxicity (serum creatinine level of ≈2 mg per deciliter [177 μmol per liter] or creatinine clearance of >50 ml per minute), or mild ototoxicity (a reduction of ≤10 dB in high-frequency discrimination). More severe neurologic, otic, or renal toxic effects that had not resolved by the time of the next scheduled dose required withdrawal of the woman from the study but with continued follow-up. Cardiac toxic effects (except asymptomatic sinus bradycardia) were reported to the study chairman and were considered a cause for discontinuing therapy. A severe allergic reaction (bronchospasm, hypotension, or diffuse urticaria) during the infusion of paclitaxel was an indication for immediate discontinuation of the infusion and withdrawal of the woman from study treatment. Dose reductions of cyclophosphamide or paclitaxel (no reduction in the cisplatin dose was allowed) in subsequent courses were based on nadir counts from the

| Table 1. Patients’ Characteristics According to Treatment Group. |
|----------------|-----------------------|
| CHARACTERISTIC | CISPLATIN + CYCLOPHOSPHAMIDE (N = 202) | CISPLATIN + PACLITAXEL (N = 184) |
| Age (yr) | Median | Range | Median | Range |
| 0 | 55 (27) | 56 (30) | 59 (34) | 59 (34) |
| 1 | 109 (54) | 97 (53) | 116 (57) | 100 (54) |
| 2 | 38 (19) | 31 (17) | 40 (21) | 31 (17) |
| Cell type | | | | |
| Serous adenocarcinoma | 130 (64) | 140 (76) | 130 (64) | 140 (76) |
| Endometrioid adenocarcinoma | 26 (13) | 15 (8) | 26 (13) | 15 (8) |
| Mucinous adenocarcinoma | 10 (5) | 4 (2) | 10 (5) | 4 (2) |
| Clear-cell adenocarcinoma | 5 (2) | 3 (2) | 5 (2) | 3 (2) |
| Other | 31 (15) | 22 (12) | 31 (15) | 22 (12) |
| Tumor grade | | | | |
| 0 | 15 (7) | 7 (4) | 15 (7) | 7 (4) |
| 1 | 82 (41) | 82 (45) | 82 (41) | 82 (45) |
| 2 | 105 (52) | 93 (51) | 105 (52) | 93 (51) |
| Measurable disease | | | | |
| Yes | 116 (57) | 100 (54) | 116 (57) | 100 (54) |
| No | 86 (43) | 84 (46) | 86 (43) | 84 (46) |
| Stage | | | | |
| III | 129 (64) | 123 (67) | 129 (64) | 123 (67) |
| IV | 73 (36) | 61 (33) | 73 (36) | 61 (33) |
| Ascites (>100 ml) | | | | |
| No | 29 (14) | 21 (11) | 29 (14) | 21 (11) |
| Yes | 173 (86) | 163 (89) | 173 (86) | 163 (89) |

See Blessing for an explanation of possible scores.

Copyright © 1996 Massachusetts Medical Society. All rights reserved.
Table 2. Number of Courses Completed and Timing, According to Treatment Group.

<table>
<thead>
<tr>
<th>COURSE</th>
<th>CISPLATIN + CYCLOPHOSPHAMIDE</th>
<th>CISPLATIN + PACLITAXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO. OF WOMEN TREATED</td>
<td>MEAN NO. OF DAYS BETWEEN COURSES</td>
</tr>
<tr>
<td>1</td>
<td>201‡</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>196</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>187</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>175</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>166</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>158</td>
<td>28</td>
</tr>
</tbody>
</table>

*The median total dose was 442 mg of cisplatin per square meter and 478 mg of cyclophosphamide per square meter.

†The median total dose was 441 mg of cisplatin per square meter and 751 mg of paclitaxel per square meter.

‡One woman was not treated.

Table 3. Occurrence of Adverse Effects According to Severity and Treatment Group.

<table>
<thead>
<tr>
<th>ADVERSE EFFECT</th>
<th>CISPLATIN + CYCLOPHOSPHAMIDE</th>
<th>CISPLATIN + PACLITAXEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO. OF WOMEN</td>
<td>GRADE OF SEVERITY</td>
</tr>
<tr>
<td></td>
<td>TREATED</td>
<td>0</td>
</tr>
<tr>
<td>Reduction in white cells or neutrophils</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Reduction in platelets</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>Anemia</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>Gastrointestinal symptoms</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>Fever†</td>
<td>88</td>
<td>39</td>
</tr>
<tr>
<td>Alopecia†‡</td>
<td>63</td>
<td>10</td>
</tr>
<tr>
<td>Renal symptoms</td>
<td>93</td>
<td>32</td>
</tr>
<tr>
<td>Neurologic symptoms</td>
<td>79</td>
<td>13</td>
</tr>
<tr>
<td>Allergic reaction‡</td>
<td>99</td>
<td>0</td>
</tr>
</tbody>
</table>

*Results of repeated white-cell or granulocyte counts were not available for nine women, results of repeated platelet counts were not available for seven women, and results of repeated hemoglobin or hematocrit measurements were not available for three women. Because of rounding, not all percentages total 100.

†A Kruskal–Wallis rank test indicated that this effect was more severe in the cisplatin–paclitaxel group (P < 0.05).

‡Severity of alopecia is graded as 0, 1, or 2.

Overall and progression-free survival was measured from the date of randomization. The duration of survival was measured up to the date of death or the date of last contact if the woman was alive at the time of the last contact. The duration of progression-free survival was the minimal amount of time until the onset of clinical progression, death, or the last contact. All eligible cases were included in the analysis of survival and progression-free survival unless otherwise specified. All causes of death were used to calculate survival, and the estimates of the cumulative proportion surviving were based on Kaplan–Meier procedures. The independence of progression-free survival, overall survival, and randomized treatment was assessed with a two-tailed log-rank test, stratified according to the measurable disease. Linear proportional-hazard analysis was used to provide estimates of relative risk adjusted for other pretreatment factors. Finally, proportional-hazard analysis with an interaction term was used to assess the homogeneity of the treatment effect across prognostic groups. Only eligible women who received at least one course of treatment were included in the assessment of toxicity. One woman received no treatment. A Kruskal–Wallis rank test or a chi-square test was used to test the independence of the severity of toxicity with regard to the assigned treatment. Pearson’s chi-square test was used to test the independence of response and treatment. Twelve women, six in each treatment group, could only be partially evaluated and were classified as having no clinical response for the intention-to-treat analysis. Generally, these women received one or two courses of treatment, experienced toxic effects, and then received alternative therapy or refused any further treatment before having any objective response.

RESULTS

Characteristics of the Patients

Four hundred ten women with epithelial ovarian cancer entered the trial. Twenty-four women were ineligible — 3 because their cancer was of an inappropriate stage, 13 because they had the wrong primary tumor, 3 because they had the wrong cell type, 4 because they had a history of cancer, and 1 because she had had the wrong kind of surgery. The remaining 386 eligible women were randomly assigned to either the cisplatin–cyclophosphamide regimen or the cisplatin–paclitaxel regimen. The two groups were balanced for several prognostic factors (Table 1).

Dose Delivered and Drug Tolerance

The planned total dose of cisplatin was the same (450 mg per square meter) for both treatment groups. The 25th, 50th, and 75th percentiles of the actual cisplatin dose delivered were 410, 442, and 450 mg per square meter, respectively, for the women in the cisplatin–cyclophosphamide group and 425, 441, and 449 mg per square meter, respectively, for those in the cisplatin–paclitaxel group. There was no difference between the groups in the total delivered dose of cisplatin.

Table 2 shows the number of women treated at each cycle of treatment and the interval between consecutive cycles. More women completed the paclitaxel-based regimen (160 of 184 [87 percent]) than the standard (cisplatin–cyclophosphamide) regimen (158 of 202 [78 percent]).
percent]. Twenty-three women (11 percent) in the standard-regimen group and nine (5 percent) in the paclitaxel group did not complete all six cycles of therapy because of disease progression or death. Twenty-one women in the standard-regimen group (10 percent) and 15 in the paclitaxel group (8 percent) did not complete six cycles of therapy, either because of toxicity or because they declined to do so.

Toxicity

The frequency of adverse effects for the 385 eligible women who received at least one course of treatment is shown in Table 3. The severity of neutropenia, febrile neutropenia, alopecia, and peripheral neurotoxicity was significantly different in the two treatment groups \((P<0.05)\), with more toxicity in the cisplatin–paclitaxel group. Although neutropenia of grade 3 or 4 developed in the majority of women in the cisplatin–paclitaxel group, the incidence of febrile neutropenia was low and was consistent with the brevity of paclitaxel-induced myelosuppression. Peripheral neurotoxicity was more common in the paclitaxel group but overall was very mild. In 10 women death was at least partly attributed to treatment — 6 in the cisplatin–cyclophosphamide group and 4 in the cisplatin–paclitaxel group. Since bradycardia and atioventricular block and ventricular irritability have been reported in patients receiving paclitaxel therapy,

\[1\] the initial phase of this study required all women in the cisplatin–paclitaxel group to undergo cardiac monitoring. However, only seven women in the paclitaxel group had cardiac episodes of grade 2 or higher, such as first-degree heart block or ischemic events without other symptoms and without infarction. Therefore, the requirement of cardiac monitoring was suspended near the end of the study.

Response

Response was assessed in the 216 women who entered the study with clinically measurable disease (Table 4). The overall response rate in the cisplatin–cyclophosphamide group was 60 percent, and it was 73 percent in the cisplatin–paclitaxel group. Complete clinical responses were more frequent among women treated with cisplatin and paclitaxel (51 percent) than among those treated with cisplatin and cyclophosphamide (31 percent) \((P=0.01, \chi^2)\).

Women who had complete clinical responses or who did not have measurable disease on entering the study and had not had interval progression were required by the protocol to undergo a reassessment laparotomy. Of the 386 women, 48 (24 in each treatment group) did not undergo the procedure because of refusal or contraindication (Table 5). There was no significant difference in the proportion of negative reassessment laparotomies between the two treatment groups (20 percent vs. 26 percent).

Figures 1 and 2 show the progression-free and overall survival curves for all the eligible women. The median duration of follow-up for women alive at last contact was 37 months (range, 5 to 56). There was a statistically significant difference between the treatment groups in both these comparisons. The median progression-free survival in the cisplatin–cyclophosphamide group was 13 months (95 percent confidence interval, 11 to 15); in the cisplatin–paclitaxel group it was 18 months (95 percent confidence interval, 16 to 21) (relative risk, 0.7; 95 percent confidence interval, 0.5 to 0.8; \(P<0.001\)). The median survival of women treated with cisplatin and cyclophosphamide was 24 months (95 percent confidence interval, 21 to 30), and for women treated with cisplatin and paclitaxel it was 38 months (95 percent confidence interval, 32 to 44) (relative risk, 0.6; 95 percent confidence interval, 0.5 to 0.8; \(P<0.001\)). Including the 24 women who were deemed ineligible for this study did not appreciably alter these results.

The overall survival of women with and without clinically measurable disease in each treatment group and the overall survival according to the stage of disease were also assessed (data not shown). There was no evidence that the combination of cisplatin and paclitaxel was less effective than cisplatin and cyclophosphamide within those prognostic groupings.

Previous studies conducted by the Gynecologic Oncology Group that included women with incompletely resected stage III or IV disease suggested that those

Table 4. Clinical Response According to Treatment Group.

<table>
<thead>
<tr>
<th>CLINICAL RESPONSE</th>
<th>CISPLATIN + CYCLOPHOSPHAMIDE (N = 116)</th>
<th>CISPLATIN + PACLITAXEL (N = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number (percent)*</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>36 (31)</td>
<td>51 (51)</td>
</tr>
<tr>
<td>Partial</td>
<td>34 (29)</td>
<td>22 (22)</td>
</tr>
<tr>
<td>None</td>
<td>46 (40)</td>
<td>27 (27)</td>
</tr>
</tbody>
</table>

*Values are the numbers and percentages of women with clinically measurable disease.
with either mucinous or clear-cell adenocarcinoma tended to have a poor prognosis. Removal of such cases from the comparison of progression-free survival and overall survival did not alter the results.

DISCUSSION

The results of this trial provide strong evidence that the cisplatin–paclitaxel regimen we used is more effective than cisplatin and cyclophosphamide for women with advanced ovarian cancer. There was a good balance of known prognostic factors between the two treatment groups, and random sampling was unlikely to explain the differences in survival, progression-free survival, and complete response rate.

The results we obtained are similar to those of the predecessor to this trial — a study that included a similar sample of women who were treated with similar doses of cisplatin and paclitaxel. It appears that the relative benefit of paclitaxel in our trial was not due to a poorer-than-anticipated outcome among the women receiving standard therapy. There is no evidence that the benefit of cisplatin and paclitaxel was limited to women with measurable disease or to those with stage III disease. The toxicity of the drugs was clinically manageable.

When an active new drug enters clinical use, its effect on survival may be blunted because of the crossover of patients from the old standard to the new drug. There may be a similar but less profound effect on progression-free survival when crossover occurs before clinical progression — for example, after a positive reassessment laparotomy. Such a situation occurred when cisplatin, already commercially available, was incorporated into primary tumor therapy. This may explain why the effect on survival was not more profound when cisplatin was first incorporated into primary tumor therapy. Crossover may have affected our trial, but to a smaller degree than usual, because paclitaxel was in limited supply during the early accrual phase of the study and the women in the cisplatin–cyclophosphamide group were often prevented from receiving paclitaxel until after they had received third-line or fourth-line therapy.

The results of this study are encouraging, but we are concerned that variants of the cisplatin–paclitaxel regimen are being adopted without proper evaluation. Some clinicians have substituted carboplatin for cisplatin, even though the carboplatin–paclitaxel combination is still in a phase 1 evaluation.

Of even greater concern to us is the reduction in the length of paclitaxel infusion to three hours or less. This practice is based largely on a trial of paclitaxel alone as second- and third-line therapy that showed similar efficacy for 3-hour and 24-hour infusions and less hematologic toxicity with the shorter infusion. This approach may be preferred by patients and may have financial advantages, but the efficacy of a three-hour infusion of paclitaxel has not been verified. Our concern about this is pertinent because in vitro data show that the duration of exposure to paclitaxel is much more important than the peak level of exposure.

APPENDIX

The following Gynecologic Oncology Group institutions participated in this study: Oregon Health Sciences Center, Johns Hopkins Oncology Center, University of Alabama at Birmingham, Duke University Medical Center, Colorado Foundation for Medical Care, Bowman Gray School of Medicine of Wake Forest University, Temple University Health Science Center Hospital, University of Minnesota Medical School, University of Mississippi Medical Center, University of California Medical Center at Irvine, Walter Reed Army Medical Center, University of Iowa Hospitals and Clinics, University of Kentucky, Pennsylvania Hospital, Washington University School of Medicine, Cooper Hospital University Medical Center, Cleveland Clinic.

CORRECTION

Cyclophosphamide and Cisplatin Compared with Paclitaxel and Cisplatin in Patients with Stage III and Stage IV Ovarian Cancer

Cyclophosphamide and Cisplatin Compared with Paclitaxel and Cisplatin in Patients with Stage III and Stage IV Ovarian Cancer. On page 1, in the Results paragraph of the Abstract, the fourth sentence should have read, "Among 216 women with measurable disease, 51 percent of the cisplatin–paclitaxel group had a complete response to therapy and 22 percent a partial response, whereas 31 percent of the cisplatin–cyclophosphamide group had a complete response and 29 percent a partial response (P = 0.01, χ² 2 = 8.97)."
To the Editor: As reported by McGuire et al. (Jan. 4 issue),1 the results of the Gynecologic Oncology Group’s phase 3 trial comparing paclitaxel plus cisplatin with cyclophosphamide plus cisplatin in women with ovarian cancer are exciting and encouraging. However, the data from this trial need to be interpreted with caution, for a number of reasons.

First, there is increasing evidence that the patients in the control group may not have received the best available platinum-based treatment. McGuire et al. state, “It appears that the relative benefit of paclitaxel in our trial was not due to a poorer-than-anticipated outcome” in the control group. To support their statement, the authors refer to a predecessor to their trial, which had similar results. This previous Gynecologic Oncology Group trial2 compared a standard-dose regimen of cyclophosphamide and cisplatin with an intensive-dose regimen (and did not involve “similar doses of cisplatin and paclitaxel”—this is clearly an error). In the intensive-dose regimen, the dose intensity of both cisplatin and cyclophosphamide was doubled, but the total dose of the two drugs was identical in each group.

A trial by Kaye et al.3 however, which also compared two cyclophosphamide and cisplatin regimens, one of which involved a doubling of both the dose intensity and the total dose of cisplatin, has shown a survival benefit associated with the regimen involving a higher total dose of cisplatin. There is also strong evidence from meta-analyses that the addition of doxorubicin to cyclophosphamide and cisplatin is a more effective treatment than cyclophosphamide and cisplatin alone.4,5

Second, McGuire et al. estimated that paclitaxel plus cisplatin improved the median survival by 14 months. Nevertheless, there is still uncertainty about the true effect. The approximate 95 percent confidence interval for the range of effects that are still plausible is six months to two years. A difference in survival of two years would be exciting, a difference of six months less so.

Finally, the improvement in median progression-free survival was less than half the observed improvement in median survival. Such an apparent discrepancy would not have been expected and raises the question whether there may be an element of chance associated with the much larger observed difference in overall survival.

Despite the very encouraging results of this trial, there is an urgent need for further large trials comparing the combination of paclitaxel and platinum with the best current standard treatment available. The Third International Collaborative Ovarian Neoplasm Study, which has a maximal accrual target of 1000 patients and 265 patients enrolled to date, is one such trial, and it involves a broader range of women with ovarian cancer.

Mahesh K.B. Parmar, D.Phil.

Josie Sandercock, B.A.
Medical Research Council Cancer Trials Office
Cambridge CB2 2BW, United Kingdom

References

To the Editor: The article by McGuire et al. on chemotherapy for suboptimally debulked advanced ovarian cancer contains ambiguities that need clarification, although we agree with the overall conclusions.

The imbalance of prognostic factors in the two treatment groups (12 percent fewer patients with serous adenocarcinoma and almost double the proportion of grade 1 tumors in the cisplatin–cyclophosphamide group), the lack of mention of differences in outcome among the participating centers (one of the two variables stratified in the randomization process), and the lack of adjustment for imbalances in prognostic factors in the analysis of progression-free and overall survival are some of the technical points that require clarification. The proportion of ineligible patients (5.9 percent) was low, but no mention is made of the distribution of such patients in the two groups or the reasons for their ineligibility (the wrong primary tumor [in 13 patients] and the wrong cell type [in 3] are not clear enough reasons), which is a matter of concern, since there were 9 percent fewer patients in the cisplatin–paclitaxel group than in the cisplatin–cyclophosphamide group.

The fact that 97 percent of the patients had been enrolled by November 1992, together with the follow-up range reported (5 to 56 months), shows that the data are at least 30 months old, without any update since mid-1993. The report does not mention the starting and ending dates for enrollment or the rate of enrollment, the cutoff date...
for the last collection of data is not stated, and the survival curves show no denominators for patients at risk over time. The results of the trial will not change, but the overall shape of the curves and level of significance may change.

The most important issue is that the 5-month difference in the median time to the progression of disease is only about one third the difference in median overall survival (14 months), a counterintuitive and rare finding in clinical trials involving patients with advanced malignant solid tumors. Such a result is probably due to differences in second-line therapy in the two groups. Patients in the cisplatin–paclitaxel group with a recurrence or progression of disease appear to have been treated further with alkylating agents, but the authors do not indicate whether they were treated again with paclitaxel. The authors state that patients in the cisplatin–cyclophosphamide group did not receive paclitaxel as second-line treatment, or received it only very late in the course of the disease, because a limited supply of paclitaxel prevented a crossover study. Either the crossover was specifically not allowed, or there is an ethical problem, since the supply of paclitaxel prevented a crossover study. Either the crossover was specifically not allowed, or there is an ethical problem, since the supply of paclitaxel prevented a crossover study.

It is also important that the two groups of patients did not differ in terms of the number of complete responses confirmed by second-look operations. We think a longer follow-up is needed to determine whether the difference in survival is maintained.

This limitation of the study, the high cost of the treatment, and the difficulties of the schedule proposed by the authors (a 24-hour infusion, which suggests an added cost) lead us to conclude that paclitaxel and cisplatin should not be adopted in routine clinical practice until more studies have confirmed that this regimen increases the cure rate or long-term progression-free survival.

Angel J. Lacave, M.D.
Ignacio Peláez, M.D.
Isabel Palacio, M.D.
Hospital General de Asturias
33006 Oviedo, Spain

The authors reply:

To the Editor: We agree that clinical trials in women with advanced ovarian carcinoma that focus only on survival can be misleading. Since it is not clear how tumor debulking during reassessment surgery and the timing of salvage chemotherapy affect survival, we are continuing to assess clinical responses in patients with measurable disease.

Parmar and Sandercock and Lacave et al. suggest that the benefit we found in overall and progression-free survival among patients treated with cisplatin and paclitaxel is due to an inappropriate standard treatment. Parmar and Sandercock suggest that we should have used a more intensive regimen of cisplatin, whereas Lacave et al. note that the toxic effects of the standard regimen required delays between courses of treatment and therefore resulted in a diminished dose intensity. The doses in our study were a reasonable compromise between intensive regimens of cisplatin and cyclophosphamide, which cause substantial toxic effects, and less intensive regimens, which prolong the treatment in order to achieve the total doses planned.1

The results of a meta-analysis suggest that adding doxorubicin to regimens based on an alkylating agent or platinum may decrease the death rate by 15 percent.2 Parmar and Sandercock note that this result is similar to an estimate from a meta-analysis of randomized trials

References

comparing platinum and nonplatinum regimens.3 Most of these trials, however, did not restrict the use of platinum in salvage therapy. Any advantage due to platinum given in the initial treatment was probably obscured, since the survival comparisons reflect early versus late treatment with platinum.3 Because the evidence for doxorubicin is not compelling, considering it equivalent to platinum overstates its benefit.

Cvitkovic and Misset suggest that the observed survival benefit associated with paclitaxel is due to the 3 percent difference in grade 1 tumors. This small difference, however, favors the cisplatin–cyclophosphamide regimen rather than the cisplatin–paclitaxel regimen. In addition, previous studies have indicated that with the exception of the clear-cell and mucinous types, the cell type is not an important prognostic factor in women with suboptimally debulked ovarian cancer.

Although the manuscript we submitted indicated that patients were enrolled in this study between April 1990 and March 1992, this information was deleted in the editorial process. The results presented summarize the data on survival as of April 1995. The tick marks in Figure 1 and Figure 2 of the article indicate the censored survival times. The follow-up of these patients is ongoing.

W.P. McGuire, M.D.
Emory University
Atlanta, GA 30322

W.J. Hoskins, M.D.
Memorial Sloan-Kettering Cancer Center
New York, NY 10021

M.F. Brady, B.S.
Roswell Park Cancer Institute
Buffalo, NY 14263

References

