Assessing the Risk of Hospital-Acquired *Clostridium Difficile* Infection With Proton Pump Inhibitor Use: A Meta-Analysis

Vanessa Arriola, MPH; Jessica Tischendorf, MD; Jackson Musuuza, MBChB, MPH, MS; Anna Barker, BA; Jeffrey W. Rozelle, MPH; Nasia Safdar, MD, PhD

Background. *Clostridium difficile* is the principal infectious cause of antibiotic-associated diarrhea and accounts for 12% of hospital-acquired infections. Recent literature has shown an increased risk of *C. difficile* infection (CDI) with proton pump inhibitor (PPI) use.

Objective. To conduct a systematic assessment of the risk of hospital-acquired CDI following exposure to PPI.

Methods. We searched multiple databases for studies examining the relationship between PPI and hospital-acquired CDI. Pooled odds ratios were generated and assessment for heterogeneity performed.

Results. We found 23 observational studies involving 186,033 cases that met eligibility criteria. Across studies, 10,307 cases of hospital-acquired CDI were reported. Significant heterogeneity was present; therefore, a random effects model was used. The pooled odds ratio was 1.81 (95% CI, 1.52–2.14), favoring higher risk of CDI with PPI use. Significant heterogeneity was present, likely due to differences in assessment of exposure, study population, and definition of CDI.

Discussion. This meta-analysis suggests PPIs significantly increase the risk of hospital-acquired CDI. Given the significant health and economic burden of CDI and the risks of PPI, optimization of PPI use should be included in a multifaceted approach to CDI prevention.

Infect Control Hosp Epidemiol 2016;1–10

Clostridium difficile is the principal infectious cause of antibiotic-associated diarrhea and colitis, accounting for an estimated 20%–30% of cases. The burden of disease is substantial—in a multistate point prevalence study on healthcare-associated infections in 2011, *C. difficile* infection (CDI) accounted for 12% of all healthcare-associated infections. In the same year, the national burden of disease was projected at 453,000 incident infections with 83,000 recurrent cases and 29,300 deaths resulting from these recurrences. Mortality estimates suggest attributable mortality of 6.9% and 16.7% at 30 days and 1 year, respectively. This health burden also comes with a profound economic toll, estimated at greater than $1 billion per year, further highlighting the urgency for strategies to prevent CDI.

To devise and adopt prevention strategies in inpatient settings, an understanding of the risk factors for CDI is essential. Several conventional risk factors include older age, antibiotic exposure, prolonged hospitalization, immunocompromising condition, or serious underlying illness. Recent literature has demonstrated an association between proton pump inhibitor (PPI) use and increased risk of CDI. A proposed biologic mechanism is that PPI suppresses gastric acid, which is an important host defense mechanism to prevent germination of ingested *C. difficile* spores. PPI use may also result in deleterious changes in the human gut microbiome, increasing the risk of CDI.

Due to the observed association and plausible biologic mechanisms, the US Food and Drug Administration released a drug safety announcement in 2012 regarding the association between *C. difficile* and the use of PPIs and concluded that PPIs were associated with increased risk of CDI. Despite concerns for adverse effects, PPI use remains ubiquitous. Understanding the magnitude of risk for hospital-acquired CDI with PPI use would inform the potential impact of interventions to optimize PPI prescribing on hospital-acquired CDI rates. We undertook a systematic review to examine the relationship between PPI use and hospital-acquired CDI.

This systematic review evaluates the literature to answer 2 questions: (a) Are PPIs associated with an increased risk of hospital-acquired CDI? (b) If so, what is the magnitude of this association?
METHODS

We conducted this analysis using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis framework. We registered this review at the international prospective register of systematic reviews known as PROSPERO on June 21, 2015 (registration number: CRD42015023690).

Data Sources and Searches

Two reviewers (V.A. and A.B.) independently searched MEDLINE (PubMed), Web of Science, Cumulative Index to Nursing and Allied Health Literature, Cochrane Central Register of Controlled Trials, University of York Center for Reviews and Dissemination, and Clinicaltrials.gov. These bibliographic databases were searched for articles published from January 1, 1980, through July 30, 2015. The Web of Science search facilitated the capture of most conference abstracts or proceedings. For completeness, we searched BIOSIS databases for conference proceedings. Details of the search strategies are available in the Online Supplemental Appendix A.

We also searched for ongoing systematic reviews or meta-analyses of studies with the terms “Proton Pump Inhibitor” and “Clostridium difficile infection” at the Cochrane Library Online as of June 11, 2015. Two studies were identified; however, neither focused solely on hospital-acquired CDI. All medical subject headings of “proton pump inhibitors” and “Clostridium difficile” were searched in the MeSH database available from PubMed’s homepage. Twenty-five and 19 subheadings were found for the term “proton pump inhibitors” and “clostridium difficile,” respectively. Generic brand names of proton pump inhibitors such as “omeprazole,” “lansoprazole,” “dexlansoprazole,” “esomeprazole,” “pantoprazole,” “rabeprazole,” and “ilaprazole” were added to the search. Studies with different type, dose, and duration of the adopted proton pump inhibitor(s) were included.

To assess articles by relevance, abstracts were screened for the following inclusion criteria: (1) studies were observational studies or clinical trials, (2) risk of hospital-acquired CDI after taking PPI was evaluated, (3) reported data were quantitative, (4) the article was published in a peer-reviewed journal, and (5) the study presented data in such a way that allowed for calculation of risk or odds ratio. No language restrictions were used. Exclusion criteria consisted of the following: (1) studies evaluated the risks in community-onset CDI cases, community-associated CDI cases, indeterminate-onset CDI cases, and unknown outpatient cases after taking PPI, (2) reported data were qualitative, (3) the article was published as a dissertation, (4) the study population had recurrent CDI defined as relapse of the original infection (ie, endogenous persistence of the same strain) or reinfection (ie, acquisition of a new strain from an exogenous source) that occurred less than or equal to 8 weeks after the onset of a previous episode, and (5) studies were pediatric, animal-, or lab-based studies.

Study Selection

One reviewer (V.A.) merged search results using a reference management software which facilitated removal of duplicate records. Two independent reviewers (V.A. and A.B) screened all abstracts identified in the initial search.

Data Extraction and Quality Assessment

Our search, conducted on July 2, 2015, yielded 700 articles. Of these, we retrieved 493 abstracts and full-text articles that met eligibility criteria. Fifty-nine duplicate records were removed. A total of 434 articles were screened at the abstract level and 83 full-text articles were screened for eligibility (inclusion and exclusion criteria). Complete search terms, strategy, and results are described in Appendix A. Reviewers identified 23 full-text articles from which data were extracted, as shown in Figure 1. Two reviewers (V.A. and J.T.) independently extracted data from the articles. Any disagreement or discrepancy was settled in consensus with a third investigator (N.S.). Reviewers extracted data using a standard electronic data sheet (Excel; Microsoft). Data extracted included study methods (study design, total study duration, methodology), participants (demographic characteristics, location, diagnostic criteria), exposure (PPI definition, regimen, dose), CDI outcome (definition, measurements), and results.

The quality of case-control and cohort studies was assessed independently by 2 reviewers (V.A. and A.B) using the Meta-analysis of Observational Studies in Epidemiology guidelines.

Outcomes

The primary outcome of interest was hospital-acquired CDI, defined in studies by positive stool toxin assay, clinical diagnosis, or International Classification of Disease, Ninth Revision, codes. For our analysis, we extracted data regarding sample size and case frequency, as well as reported odds ratios and risk ratios. Descriptive statistics were used to define the study population. Subgroup analysis was performed to determine how CDI case definition may impact risk of PPI.

Data Synthesis and Analysis

The relationship between PPI and CDI was examined using Review Manager software, version 5.3 (Rev Man; Cochrane Collaboration). We calculated the Cochran χ^2 statistic to evaluate existence and degree of heterogeneity. A $P < .1$ for χ^2 was used as the cutoff to determine significance of heterogeneity. Significant heterogeneity would mean utilizing a random effects model, whereas a χ^2 that was not significant would suggest that a fixed effect model would be adequate.

Assessment of Publication Bias

To assess for publication bias, funnel plots were generated by Rev Man. Funnel plots are used to check for asymmetry
in distribution of study results, which aids in identification of studies prone to bias. If bias is present, plots of study variability or sample size against effect size are skewed and asymmetrical. Small studies are more likely to have a poor quality and be prone to bias; thus, the trim and fill method of Duval and Tweedie was followed to detect and correct for any publication bias present.

RESULTS

Study Characteristics

A total of 23 studies assessing the relationship between PPI and CDI were included in this review. Table 1 shows the general characteristics of component studies in the meta-analysis. Of the 23 component studies, 19 studies were case-control studies, and 4 employed retrospective cohort designs. There were no randomized controlled trials that evaluated the relationship between PPI and CDI and no conference proceedings or abstracts met eligibility criteria. CDI case definitions varied, with the most common case definition being a positive stool toxin assay with associated symptoms (10 studies) or without documented symptoms (11 studies). Two studies defined cases by International Classification of Disease, Ninth Revision, codes.

Sample sizes in studies ranged from 32 to 101,796 hospitalized patients, totaling 186,033 cases. Amongst these studies, 10,307 CDI cases were reported. Studies were from centers around the world: 12 from the United States, 6 from Canada, 2 in the United Kingdom, and 1 each in South Korea, Israel, and China. The mean age of patients amongst the 16 studies that allowed for this calculation was 69.9 years. The proportion of males in included studies ranged significantly, from as few as 24.5% to 66.1%. All studies were in hospitalized patients, and 3 studies were conducted exclusively in ICU patients.

Definition of Exposure

There was no standard definition of PPI exposure. Exposure varied from use of PPI at the time of CDI diagnosis, to exposure during index hospitalization, to any exposure in the previous 90 days (Table 1). Only 1 study commented specifically upon which PPIs were used. In this study, PPIs used were omeprazole, lansoprazole, and pantoprazole.

Relationship Between PPI and CDI

Fourteen studies identified a significant association between CDI and PPI, while the association was not statistically significant in the remaining 9. Of these 9, six had a trend toward a positive association—that is, an increased risk of CDI with PPI exposure. The remaining three had nonsignificant odds ratios less than 1 (0.82–0.86).
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Study location</th>
<th>Sample size, n</th>
<th>Mean age (SD or range), y</th>
<th>Male sex, n (%)</th>
<th>Study patients</th>
<th>Definition of PPI exposure</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Tureihi et al, 2005</td>
<td>US</td>
<td>53</td>
<td>82.3 (61–101)</td>
<td>13 (24.5)</td>
<td>LTACH patients</td>
<td>Duration of exposure not specified</td>
<td>Case-control</td>
</tr>
<tr>
<td>Aseeri et al, 2008</td>
<td>US</td>
<td>188</td>
<td>NA</td>
<td>82 (43.6)</td>
<td>Hospitalized inpatients</td>
<td>≥3 days use before symptom onset</td>
<td>Case-control</td>
</tr>
<tr>
<td>Barletta and Sclar, 2014</td>
<td>US</td>
<td>408</td>
<td>69 (15)</td>
<td>229 (56)</td>
<td>ICU patients</td>
<td>≥2 days use before CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Baxter et al, 2008</td>
<td>US</td>
<td>4493</td>
<td>68</td>
<td>2167 (48.2)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure in 60 days preceding CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Beaulieu et al, 2007</td>
<td>Canada</td>
<td>827</td>
<td>65</td>
<td>494 (59.7)</td>
<td>ICU patients</td>
<td>Any exposure during index hospitalization</td>
<td>Cohort</td>
</tr>
<tr>
<td>Dalston et al, 2014</td>
<td>Canada</td>
<td>14,719</td>
<td>68.8 (17)</td>
<td>7007 (47.6)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure in 10 days preceding CDI diagnosis</td>
<td>Cohort</td>
</tr>
<tr>
<td>Betterke et al, 2007</td>
<td>US</td>
<td>36,086</td>
<td>NA</td>
<td>15,159 (42)</td>
<td>Hospitalized inpatients</td>
<td>Use at the time of CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Howell et al, 2010</td>
<td>US</td>
<td>101,796</td>
<td>56.6 (19.9)</td>
<td>41,802 (41.1)</td>
<td>Hospitalized inpatients</td>
<td>Duration of exposure not specified</td>
<td>Case-control</td>
</tr>
<tr>
<td>Jenkins et al, 2010</td>
<td>UK</td>
<td>32</td>
<td>75.7 (62–85)</td>
<td>14 (43.8)</td>
<td>Hospitalized inpatients</td>
<td>Duration of exposure not specified</td>
<td>Case-control</td>
</tr>
<tr>
<td>Kazakova et al, 2006</td>
<td>US</td>
<td>195</td>
<td>NA (30–98)</td>
<td>86 (44.1)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure in 30 days preceding CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Kim et al, 2010</td>
<td>South Korea</td>
<td>125</td>
<td>67.6 (13.9)</td>
<td>57 (45.6)</td>
<td>Hospitalized inpatients</td>
<td>≥3 days use before CDI onset</td>
<td>Case-control</td>
</tr>
<tr>
<td>Linney et al, 2010</td>
<td>Canada</td>
<td>284</td>
<td>75.65 (13)</td>
<td>134 (47.2)</td>
<td>Hospitalized inpatients</td>
<td>Use at the time of CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Loo et al, 2005</td>
<td>Canada</td>
<td>474</td>
<td>74.5 (11.9)</td>
<td>241 (50.8)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure in 6 weeks preceding CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Manges et al, 2010</td>
<td>Canada</td>
<td>75</td>
<td>69.5 (64.8–75.1)</td>
<td>36 (48)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure during index hospitalization</td>
<td>Case-control</td>
</tr>
<tr>
<td>McFarland et al, 2007</td>
<td>US</td>
<td>348</td>
<td>NA</td>
<td>368 (51.2)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure in 3 months preceding CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Modena et al, 2005</td>
<td>US</td>
<td>250</td>
<td>59.7 (17.2)</td>
<td>128 (51.2)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure during index hospitalization</td>
<td>Case-control</td>
</tr>
<tr>
<td>Shah et al, 2000</td>
<td>UK</td>
<td>252</td>
<td>81.8 (65–96)</td>
<td>85 (33.7)</td>
<td>Hospitalized inpatients</td>
<td>Any exposure in 16 weeks preceding CDI diagnosis</td>
<td>Case-control</td>
</tr>
<tr>
<td>Stevens et al, 2011</td>
<td>US</td>
<td>10,154</td>
<td>NA</td>
<td>10,154</td>
<td>Hospitalized inpatients</td>
<td>Any exposure during index hospitalization</td>
<td>Cohort</td>
</tr>
<tr>
<td>Yip et al, 2001</td>
<td>Canada</td>
<td>54</td>
<td>73 (41–89)</td>
<td>26</td>
<td>Hospitalized inpatients</td>
<td>Duration of exposure not specified</td>
<td>Case-control</td>
</tr>
<tr>
<td>Wang et al, 2014</td>
<td>China</td>
<td>124</td>
<td>59–69 (30–35)</td>
<td>82 (66.1)</td>
<td>ICU patients</td>
<td>Duration of exposure not specified</td>
<td>Cohort</td>
</tr>
</tbody>
</table>

NOTE. CDI, *Clostridium difficile* infection; ICU, intensive care unit; LTACH, long-term acute care hospital; NA, not available; PPI, proton pump inhibitor.
Our main analysis was performed in 2 subgroups: the 4 cohort studies and the 19 case control studies, as detailed in Figure 2. All cohort studies showed an increased risk of CDI in patients exposed to PPI, with 2 of 4 demonstrating statistical significance. All but 3 case control studies demonstrated a positive association between PPI and CDI, with 12 reaching statistical significance in this relationship. Pooled analysis of cohort studies demonstrated an odds ratio of 1.97 (95% CI, 1.29–2.98), which was statistically significant. There was no difference of overall effect between the subgroups (P < .00001). Pooled odds ratio for all 23 studies was 1.81 (95% CI, 1.52–2.14).

Subgroup Analysis by Definition of CDI

Subgroup analysis was performed to determine whether CDI case definition altered the strength of association with PPI, as detailed in Figures 4 and 5. In the 10 studies that included symptoms in the CDI case definition, the pooled odds ratio was 1.42 (95% CI, 1.07–1.88). In the 13 studies that did not require symptoms for CDI case definition, the pooled odds ratio was 2.15 (95% CI, 1.74–2.66).
Effect of Confounding Factors on Relationship Between PPI and CDI

Most studies took into consideration one or more of the most common risk factors for CDI: exposure to antibiotic therapy or H2 blockers, renal failure, diabetes mellitus, immunosuppression, malignancy, and gastrointestinal disease. In addition, most studies identified sex, age, and additional comorbidities, such as respiratory illness and length of hospitalization, as potential confounding variables. Given the disparate study designs, patient populations and study locations, we did not attempt to control for the numerous confounding variables identified in component studies. Confounders identified in each of the included studies are detailed in Table 2.

Assessment of Heterogeneity and Publication Bias

Significant statistical heterogeneity was found ($I^2 = 82\%$), as shown in Figure 3, which was not adequately explained by subgroup analyses to identify sources. Clinical heterogeneity was also present given the differing definitions across studies of exposure as well as confounding variables.

By applying trim and fill, it was determined that no apparent publication bias was present.

Discussion

Although several reviews and studies have demonstrated an association between PPI use and CDI, PPIs continue to be widely used among CDI-susceptible populations. Our results show a significant association between PPI use and the incidence of...
hospital-acquired CDI, lending further evidence to PPI as a risk factor for CDI. Using the relevant available literature, we calculated a pooled odds ratio of 1.81, as shown in Figure 2.

Four previous systematic reviews of similar methodology have studied this question. Tleyjeh and colleagues performed a meta-analysis of 51 observational studies examining both community- and healthcare-associated CDI, all of which demonstrated a positive association between PPI and CDI, with a pooled odds ratio of 1.65 (95% CI, 1.47–1.85). They estimated the number needed to harm amongst patients receiving PPI concurrent with antibiotic therapy at 50 (95% CI, 31–97); this is significant given the high volume of patients exposed to both classes of medications during a hospitalization. Deshpande et al. in 2012 examined the role of PPI in the development of CDI and specifically recurrent CDI in both the inpatient and outpatient setting. In the review of 30 observational studies by Deshpande et al., pooled meta-analysis demonstrated greater odds of developing CDI amongst those on PPI (odds ratio, 2.15 [95% CI, 1.81–2.55]). This review also performed subgroup analysis to examine the effect of concomitant antibiotic use on the relationship between PPI and CDI. They found that the higher risk of CDI among PPI users persisted across each subgroup, regardless of the frequency of antibiotic use reported on component studies. In 2015, Deshpande performed a meta-analysis examining the relationship between PPI and recurrent CDI; the pooled risk ratio from 8 studies was 1.58 (95% CI, 1.13–2.21). Garey et al. found a similar relationship when examining the association between any anti-ulcer medication (PPI and H2 blocker) and recurrent CDI, with a statistically significant pooled odds ratio from 3 studies of 2.149 (95% CI, 1.13–4.08). Previous data have also demonstrated increased risk of severe or severe-complicated CDI in patients receiving PPI. Significant heterogeneity existed across studies, which limited our ability to perform additional analysis regarding potential confounders and CDI outcomes. Despite this heterogeneity, all but 3 studies demonstrated a positive association between PPI use and CDI—that is, PPI exposure appears to increase the risk of CDI significantly. Several confounders were proposed in included studies, many known to be conventional risk factors for CDI: old age, use of antibiotics, prolonged hospital course, immunosuppression, and underlying chronic disease.

Inclusion of symptoms in CDI case definition appears to impact the relationship with PPI, with a less robust association...
when symptoms were required for CDI case identification. This may suggest colonization is an important mediator in the association between CDI and PPI. Data regarding the proportion with clinically apparent disease in the studies that did not include symptoms in the CDI case definition are not available. Without these data, we cannot comment further on the frequency of colonization in these studies and the contribution to the association between PPI and CDI. The pooled odds ratio in this group remained significant, however, in line with our remaining results and previous studies demonstrating an association between CDI and PPI. Given colonization with toxigenic *C. difficile* greatly increases the risk of clinical infection, reducing risk of colonization is an important aspect of an infection prevention program.

Overuse of PPIs is widespread. In 1 study, 59% of general medical patients receiving PPI did not have a clear indication for use. These numbers are similar amongst critically ill patients, with Farrell and colleagues citing 68.1% of patients on gastric acid suppression for stress ulcer prophylaxis did not have identifiable risk factors for stress-related mucosal bleeding. Our study highlights the importance of optimizing PPI use as an important component of a CDI reduction program. Barriers to reducing unnecessary PPI use in the inpatient setting should be studied to inform interventions to combat overuse or misuse. With the results of our meta-analysis and the results of the others on this topic, it should now be possible to predict the impact PPI optimization may have on reduction in hospital-acquired CDI rates. Intervention studies in this area are now needed.

Our study has several limitations. First, our results suffer the limitations of the component studies, such as potential selection bias and other limitations of the studies. The studies included in our meta-analysis are retrospective in nature, with the exception of two prospective studies. The results of these studies may be subject to selection bias and other limitations of the studies. The results of our meta-analysis indicate that PPIs are associated with an increased risk of CDI, but further studies are needed to determine the extent of this association and the potential for reducing the risk of CDI through PPI optimization.

Table 2. Intrastudy Risk of Bias, According to Guidelines for Meta-analysis of Observational Studies in Epidemiology, and Confounders Identified in Component Studies

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Study design</th>
<th>Important confounders and/or prognostic factors identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Tureihi et al, 2005</td>
<td>Case-control</td>
<td>Age, and antibiotic treatment</td>
</tr>
<tr>
<td>Aseri et al, 2008</td>
<td>Case-control</td>
<td>Admission date, sex, age group, antibiotic use, patient location, and room type</td>
</tr>
<tr>
<td>Barletta and Sclar, 2014</td>
<td>Case-control</td>
<td>Prior hospital admission, ICU admission, admission from a skilled nursing facility, immunosuppression, number of antibiotics received, PPI duration, and time to event</td>
</tr>
<tr>
<td>Baxter et al, 2008</td>
<td>Case-control</td>
<td>Number of days spent in the hospital, ICU days, antibiotics</td>
</tr>
<tr>
<td>Beaulieu et al, 2007</td>
<td>Cohort</td>
<td>Age, gender, length of stay, comorbidities, APACHE score, NGT feeding, tracheal tube placement, H2RA, and antibiotics</td>
</tr>
<tr>
<td>Dalton et al, 2009</td>
<td>Cohort</td>
<td>Independent covariates (demographic characteristics such as age, gender, race/ethnicity), albumin and white blood cell count at the time of CDAD diagnosis, the Charlson comorbidity score, prior admissions to Montefiore Medical Center within 180 days, and prior use of antibiotics and PPIs (last 2 were dichotomous)</td>
</tr>
<tr>
<td>Dubberke et al, 2007</td>
<td>Case-control</td>
<td>Comorbid conditions that will increase the risk of CDAD (age, admissions, antibiotics, CDAD pressure, albumin level, leukemia/lymphoma, mechanical ventilations, H2RA, and anti-motility agents)</td>
</tr>
<tr>
<td>Howell et al, 2010</td>
<td>Case-control</td>
<td>Age, antibiotics, and propensity score-based likelihood of receipt of acid suppression therapy</td>
</tr>
<tr>
<td>Jenkins et al, 2010</td>
<td>Case-control</td>
<td>Not specified</td>
</tr>
<tr>
<td>Kazakova et al, 2006</td>
<td>Case-control</td>
<td>Antibiotics, H2RA, length of stay, COPD, psychosis, and depression</td>
</tr>
<tr>
<td>Kim et al, 2010</td>
<td>Case-control</td>
<td>Age, serum albumin level, and NGT feeding</td>
</tr>
<tr>
<td>Linney et al, 2010</td>
<td>Case-control</td>
<td>Age, sex, discharge date and hospital unit, antibiotics, IBD, cancer, diabetes, NGT feeding, LOS, and previous residence</td>
</tr>
<tr>
<td>Loo et al, 2005</td>
<td>Case-control</td>
<td>Age, sex, number of days at risk for CDAD, Charlson index, and the use of chemotherapy, PPI, histamine H2 blockers, and enteral feeding</td>
</tr>
<tr>
<td>Manges et al, 2010</td>
<td>Case-control</td>
<td>Controlled for Bacteroidetes and Firmicutes spp.</td>
</tr>
<tr>
<td>McFarland et al, 2009</td>
<td>Case-control</td>
<td>Not specified</td>
</tr>
<tr>
<td>Modena et al, 2005</td>
<td>Case-control</td>
<td>Antibiotic use and infections</td>
</tr>
<tr>
<td>Muto et al, 2005</td>
<td>Case-control</td>
<td>Age, diabetes, organ transplantation, H2RA, and antibiotics</td>
</tr>
<tr>
<td>Novack et al, 2014</td>
<td>Case-control</td>
<td>Adjusting to Charlson index</td>
</tr>
<tr>
<td>Pakyz et al, 2013</td>
<td>Case-control</td>
<td>Controlling by patient-level covariates; NO hospital-level medication covariates</td>
</tr>
<tr>
<td>Shah et al, 2006</td>
<td>Case-control</td>
<td>Not specified</td>
</tr>
<tr>
<td>Stevens et al, 2011</td>
<td>Cohort</td>
<td>Comorbid conditions within 48 hours following admission: diabetes, respiratory illness, kidney disease, transplant, and cancer</td>
</tr>
<tr>
<td>Yip et al, 2001</td>
<td>Case-control</td>
<td>Not specified</td>
</tr>
<tr>
<td>Wang et al, 2014</td>
<td>Cohort</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

NOTE. In all studies, the study population, outcome, and outcome assessment were clearly defined. APACHE, Acute Physiology and Chronic Health Evaluation; *C. difficile*, *Clostridium difficile*; CDAD, *C. difficile*-associated diarrhea; COPD, chronic obstructive pulmonary disease; H2RA, histamine receptor 2 antagonist; IBD, inflammatory bowel disease; ICU, intensive care unit; LOS, length of stay; NGT, nasogastric tube; PPI, proton pump inhibitor.
bias when selecting controls. Secondly, studies were quite heterogeneous in their methods and outcome reporting. Given this heterogeneity, we were not able to independently adjust for potential confounders in the relationship between PPI and CDI. We attempted to control for any significant outliers by developing a priori inclusion and exclusion criteria and applying these stringently. Third, included studies used varying case definitions for CDI infection, potentially contributing to misclassification bias. We have addressed this by performing subgroup analysis. Finally, publication bias is always a potential concern in meta-analyses, and it is possible that studies demonstrating either no association or a negative association between PPI use and CDI are less likely to be published. However, we assessed this using the trim and fill method for publication bias assessment, and publication bias was not identified in our review.

In conclusion, our results provide further evidence that PPIs increase the risk of CDI in hospitalized patients. Given the reported overprescription of PPIs,\(^5\)\(^2\)\(^4\)\(^5\) optimization of PPI use in the inpatient setting should be a focus of infection prevention programs. Minimizing inappropriate use may have a significant impact on rates of hospital-acquired CDI.

Acknowledgments

Financial support. Veterans Health Administration National Center for Patient Safety of the US Department of Veterans Affairs; Veterans Affairs MERIT award (no. I01CX000391 to N.S.); and National Institutes of Health pre-doctoral traineeship (awards UL1TR000427 and TL1TR000429 to A.B.).

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.

Disclaimer. The views expressed in this article are those of the author(s) and do not represent the views of the US Department of Veterans Affairs or the United States Government.

Address correspondence to Nasia Safdar, MD, PhD, 5221 UW Med Foundation Centennial Bldg, 1685 Highland Ave, Madison, WI 53705 (ns2@medicine.wisc.edu).

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/ice.2016.194

References

