De Novo AML
Overview

Ryan Mattison, MD
University of Wisconsin
Comprehensive Cancer Center
January 5, 2010
Acute Myeloid Leukemia

- Incidence/Prevalence
- Disease Categories (FAB vs. WHO)
- Risk Stratification
 - Age, cytogenetics, molecular markers
- Induction/Consolidation Options
- Response Criteria
- Role of Clinical Trials
AML Fast Facts

- In 2008...
 - 13,290 new cases
 - 8820 deaths

- In comparison...
 - Lung cancer-220,000 new cases and 160,000 deaths
 - Pancreas 42,000 new cases and 35,000 deaths
 - Lymphoma-65,000 new cases and 19,000 deaths

- Relatively rare, but devastating disease for which new, less toxic therapies are needed

Median age 70 years

Tallman, M. S. Hematology 2005;2005:143-150
Clinical Features

- Infections, fatigue, dyspnea, bleeding, constitutional symptoms
- Elevated white blood count with circulating blasts (highly variable numbers)
- Anemia, thrombocytopenia
Diagnostic Workup

- Bone marrow aspirate/biopsy
 - Cytochemistry
 - Immunophenotyping
 - Cytogenetics—strongest prognostic factor
- Molecular testing
 - FISH for specific genetic rearrangements
 - PCR-based testing for
 - FLT-3
 - NPM1
 - CEBPA
 - More to come…
Disease Categories

- **FAB (French-American-British) classification**
 - Established in 1976
 - Based on morphology and cytochemical stains and flow cytometry
 - M0, M1, M2, M4, M5, M6, M7
 - M3 (acute promyelocytic leukemia)
 - 30% blasts in BM
WHO Classification

- Devised in 1999, revised in 2008
- Takes into account molecular changes, cytogenetics, evidence of dysplasia that are known to impact prognosis
- 17 subclasses of AML (!)
- 20% blasts in bone marrow required (not 30% as before)
WHO Categories

- AML with recurrent genetic abnormalities
 - \(t(8;21),\ inv(16)\) are CBF leukemias, have better prognosis
 - \(t(15;17)\) is APL (formerly M3) and is treated differently
- AML with myelodysplasia-related changes
- Therapy-related myeloid neoplasms
- AML, not otherwise specified
- Myeloid sarcoma
- Myeloid proliferations related to Down syndrome
- Blastic plasmacytoid dendritic cell neoplasm
Prognostic Factors

- Age

- Cytogenetics
 - Good
 - Intermediate
 - Poor

- Molecular markers
 - NPM1: Mutation is good
 - FLT-3: Internal tandem duplication mutation is bad
 - CEBPA: Mutation is good
 - New studies are often being published

- Response to therapy
 - Refractory leukemia is a bad prognostic sign
Age as a Risk Factor

B: Patients < 55 years old

C: Patients > 55 years old

Tallman M et al. Blood 2005. ECOG Data
Cytogenetics

- Better risk: inv(16), t(8;21)
- Intermediate risk: Normal, +8, t(9;11)
- Poor risk
 - Complex (>3 abnormalities)
 - -5
 - -7
 - 5q-
 - 7q-
 - Involvement of 11q23 (MLL)
 - inv(3) or t(3;3)
 - t(6;9)
Cytogenetics

Heterogeneity of 3 Groups: $P < .001$

Slovak M. Blood 2000. SWOG Data
Principles of Therapy for Patients < 60 years (or up to 75 years if fit)

- **Induction therapy**
 - Clear marrow blasts and restore normal hematopoiesis
 - “7+3” cytarabine infusion (7 days) plus anthracycline (daunorubicin or idarubicin) for 3 doses
- **Supportive care until count recovery**
 - Blood product transfusion
 - Infection management
 - Mucositis and need for nutritional support
Daunorubicin Dose

Fernandez, NEJM, 2009 from ECOG 1900 Study
Induction supportive care

- Antifungal and antiviral therapy
- Blood products
 - Leukoreduced
 - Irradiated
 - PRBCs for hemoglobin < 8, platelets for <10K
- Tumor lysis syndrome prevention
 - Hydration
 - Allopurinol
- Consider LP for WBC > 100,000, for symptoms or for monocytic histology
Principles of Therapy for Patients < 60 years (or up to 75 years if fit)

- **Consolidation therapy**
 - Required, as leukemia will relapse if not given
 - **Better risk:**
 - High dose cytarabine (HiDAC)
 - Clinical trial
 - **Intermediate risk:**
 - Matched sib allo SCT
 - HiDAC
 - Clinical trial
 - **Poor risk:**
 - Clinical trial
 - Matched sib allo SCT
 - Alternative donor SCT (cord blood or haplo donor)
Response Criteria for AML

- **Complete remission**
 - Bone marrow with <5% blasts
 - ANC >1000
 - Platelets >100,000
 - No extramedullary disease

- **Patients not in CR are considered to have failed treatment**

- **Bone marrow assessed at ~day 14 and again at count recovery**
Response Criteria for AML

- Partial remission
 - Decrease of at least 50% in the blast percentage (to 5-25%) in bone marrow
 - Normal peripheral blood counts

- Relapse
 - Reappearance of blasts in the peripheral blood or > 5% in the bone marrow after achievement of CR
Principles of Therapy for Patients > 60 years or unfit for intensive chemo

- Age 60-75 and good PS (ECOG 2 or better)
 - Good risk cytogenetics
 - Clinical trial
 - 7+3
 - Complex cytogenetics
 - Clinical trial
 - SQ cytarabine
 - Hydroxyurea
 - Best supportive care

- Age >75 or PS >2 or organ dysfunction
 - Clinical trial
 - SQ cytarabine
 - Hydroxyurea
 - Best supportive care
Consolidation Options for Patients >60

- Clinical trial
- Reduced intensity allo transplant for those with suitable donors and who are fit
- Cytarabine
- Best supportive care
Pathogenesis

- Class I mutations increase proliferation/survival
 - FLT3
 - RAS
 - KIT

- Class II mutations lead to impaired differentiation
 - Core binding factor (RUNX1, CBFB-MYH11)
 - PML-RARa in APL
 - MLL rearrangements involving 11q23

- AML requires one of each type of mutation
Pathogenesis

Therapeutic Targets in Leukemia

Proliferation/survival mutations, do not affect differentiation
- FLT3-ITD
- Oncogenic RAS
- KIT alleles
- PTPN11

Mutations associated with impaired differentiation, self-renewal
- Core binding factor (CBF)
- Retinoic acid receptor α
- MLL rearrangements
- Co-activators (CBP, TIF2)
- RUNX1, GATA-1, C/EBPalpha

FLT3 inhibitors
- Others

Acute Leukemia

ATRA
- ?HDAC inhibitors

Targeting self-renewal: WNT, Notch, BMI-1, HOX
Developmental Therapeutics

- “7+3” has been used for 30 years with results as shown
- Transplant is improving, but is not for everyone
- Many challenges
 - Relatively rare disease
 - Molecular diversity
 - Patients often have co-morbidities
 - Treatment often needs to start quickly
 - Risk stratification
 - Randomization
Targets and Possible Therapies

- **Signal transduction**
 - FLT3: Small molecule inhibitors
 - RAS: Farnesyl transferase inhibitors
 - mTOR: Rapamycin
 - PI3/AKT: Small molecule inhibitors

- **Differentiation**
 - PML-RARa: ATRA, arsenic for APL
 - CBF: HDAC inhibitors
 - MLL fusions: HDAC inhibitors, hypomethylating agents

- More targets will be coming
- Adaptive randomization trial design
Questions/Discussion